Skip to main content
Log in

Improved Thermal Performance of Diamond-Copper Composites with Boron Carbide Coating

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

B4C-coated diamond (diamond@B4C) particles are used to improve the interfacial bonding and thermal properties of diamond/Cu composites. Scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy were applied to characterize the formed B4C coating on diamond particles. It is found that the B4C coating strongly improves the interfacial bonding between the Cu matrix and diamond particles. The resulting diamond@B4C/Cu composites show high thermal conductivity of 665 W/mK and low coefficient of thermal expansion of 7.5 × 10−6/K at 60% diamond volume fraction, which are significantly superior to those of the composites with uncoated diamond particles. The experimental thermal conductivity is also theoretically analyzed to account for the thermal resistance at the diamond@B4C-Cu interface boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Yoshida and H. Morigami, Thermal Properties of Diamond/Copper Composite Material, Microelectron. Reliab., 2004, 44(2), p 303–308

    Article  Google Scholar 

  2. J. Molina, J. Narciso, L. Weber, A. Mortensen, and E. Louis, Thermal Conductivity of Al-SiC Composites with Monomodal and Bimodal Particle Size Distribution, Mater. Sci. Eng. A, 2008, 480(1), p 483–488

    Article  Google Scholar 

  3. K. Chu, C. Jia, and W. Li, Thermal Conductivity Enhancement in Carbon Nanotube/Cu-Ti Composites, Appl. Phys. A, 2013, 110(2), p 269–273

    Article  Google Scholar 

  4. K. Chu, C. Jia, and W. Li, Effective Thermal Conductivity of Graphene-Based Composites, Appl. Phys. Lett., 2012, 101(12), p 121916

    Article  Google Scholar 

  5. Y. Yamamoto, T. Imai, K. Tanabe, T. Tsuno, Y. Kumazawa, and N. Fujimori, The Measurement of Thermal Properties of Diamond, Diam. Relat. Mater., 1997, 6(8), p 1057–1061

    Article  Google Scholar 

  6. K. Chu, Z. Liu, C. Jia, H. Chen, X. Liang, W. Gao, W. Tian, and H. Guo, Thermal Conductivity of SPS Consolidated Cu/Diamond Composites with Cr-Coated Diamond Particles, J. Alloys Compd., 2010, 490(1-2), p 453–458

    Article  Google Scholar 

  7. T. Schubert, L. Ciupinski, W. Zielinski, A. Michalski, T. Weißgärber, and B. Kieback, Interfacial Characterization of Cu/Diamond Composites Prepared by Powder Metallurgy for Heat Sink Applications, Scr. Mater., 2008, 58(4), p 263–266

    Article  Google Scholar 

  8. K. Chu, C. Jia, H. Guo, and W. Li, On the Thermal Conductivity of Cu-Zr/Diamond Composites, Mater. Des., 2013, 45, p 36–42

    Article  Google Scholar 

  9. L. Weber and R. Tavangar, On the Influence of Active Element Content on the Thermal Conductivity and Thermal Expansion of Cu-X (X = Cr, B) Diamond Composites, Scr. Mater., 2007, 57(11), p 988–991

    Article  Google Scholar 

  10. A.M. Abyzov, S.V. Kidalov, and F.M. Shakhov, High Thermal Conductivity Composite of Diamond Particles with Tungsten Coating in a Copper Matrix for Heat Sink Application, Appl. Therm. Eng., 2012, 48, p 72–80

    Article  Google Scholar 

  11. Y. Xia, Y.Q. Song, C.G. Lin, S. Cui, and Z.Z. Fang, Effect of Carbide Formers on Microstructure and Thermal Conductivity of Diamond-Cu Composites for Heat Sink Materials, Trans. Nonferr. Met. Soc. China, 2009, 19(5), p 1161–1166

    Article  Google Scholar 

  12. Y. Fan, H. Guo, J. Xu, K. Chu, X. Zhu, and C. Jia, Effects of Boron on the Microstructure and Thermal Properties of Cu/Diamond Composites Prepared by Pressure Infiltration, Int. J. Min. Met. Mater., 2011, 18(4), p 472–478

    Article  Google Scholar 

  13. X.Y. Shen, X.B. He, S.B. Ren, H.M. Zhang, and X.H. Qu, Effect of Molybdenum as Interfacial Element on the Thermal Conductivity of Diamond/Cu Composites, J. Alloys Compd., 2012, 529, p 134–139

    Article  Google Scholar 

  14. S. Ren, X. Shen, C. Guo, N. Liu, J. Zang, X. He, and X. Qu, Effect of Coating on the Microstructure and Thermal Conductivities of Diamond-Cu Composites Prepared by Powder Metallurgy, Compos. Sci. Technol., 2011, 71, p 1550–1555

    Article  Google Scholar 

  15. Y. Zhang, H. Zhang, J. Wu, and X. Wang, Enhanced Thermal Conductivity in Copper Matrix Composites Reinforced with Titanium-Coated Diamond Particles, Scr. Mater., 2011, 65(12), p 1097–1100

    Article  Google Scholar 

  16. A. Ras, F. Auret, and J. Nel, Boron Carbide Coatings on Diamond Particles, Diam. Relat. Mater., 2010, 19(11), p 1411–1414

    Article  Google Scholar 

  17. K. Chu, W. Li, and H. Dong, Role of Graphene Waviness on the Thermal Conductivity of Graphene Composites, Appl. Phys. A, 2013, 111, p 221–225

    Article  Google Scholar 

  18. K. Chu and C. Jia, On the Thermal Expansion of CNT/Cu Composites for Electronic Packaging Applications, Appl. Phys. A, 2013, 111, p 439–443

    Article  Google Scholar 

  19. C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, and J.R. Rumble Jr, NIST Standard Reference Database 20, NIST XPS Database Version, 2003, 3.

  20. E. Rudy, Compendium of Phase Diagram Data, Air Force Materials Laboratory, Metals and Ceramics Division, Wright-Patterson AFB, 1969

    Google Scholar 

  21. E. Swartz and R. Pohl, Thermal Boundary Resistance, Rev. Mod. Phys., 1989, 61(3), p 605

    Article  Google Scholar 

  22. D. Hasselman and L.F. Johnson, Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance, J. Compos. Mater., 1987, 21(6), p 508–515

    Article  Google Scholar 

  23. A. Sukhadolau, E. Ivakin, V. Ralchenko, A. Khomich, A. Vlasov, and A. Popovich, Thermal Conductivity of CVD Diamond at Elevated Temperatures, Diam. Relat. Mater., 2005, 14(3), p 589–593

    Article  Google Scholar 

  24. S. Ren, X. Shen, C. Guo, N. Liu, J. Zang, X. He, and X. Qu, Effect of Coating on the Microstructure and Thermal Conductivities of Diamond-Cu Composites Prepared by Powder Metallurgy, Compos. Sci. Technol., 2011, 71, p 1550–1555

    Article  Google Scholar 

  25. E. Kerner, The Elastic and Thermo-Elastic Properties of Composite Media, Proc. Phys. Soc. Lond., 1956, 69, p 808

    Article  Google Scholar 

  26. R. Taylor and J. Morreale, Thermal Conductivity of Titanium Carbide, Zirconium Carbide, and Titanium Nitride at High Temperatures, J. Am. Ceram. Soc., 1964, 47(2), p 69–73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Kong, J. Improved Thermal Performance of Diamond-Copper Composites with Boron Carbide Coating. J. of Materi Eng and Perform 23, 651–657 (2014). https://doi.org/10.1007/s11665-013-0780-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0780-z

Keywords

Navigation