Skip to main content
Log in

Compact Titania Films by Spray Pyrolysis for Application as ETL in Perovskite Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Hybrid perovskite-based solar cells are projected as a potentially viable photovoltaic (PV) technology for large-scale implementation. The electron transport layer (ETL) should be dense and pinhole-free to facilitate efficient electron collection and transport from the perovskite layer to the anode, which is very important for achieving high-performance solar cells. In this study, a compact TiO2 layer was synthesized by a scalable spray pyrolysis technique. The effect of deposition temperature on the transparency, microstructure, and bandgap of c-TiO2 film was studied. Pinhole-free nanocrystalline films having > 85% transparency with uniform coverage was obtained on spray pyrolysis at 400°C and annealing at 450°C. Usability of the deposited films as ETL in perovskite solar cells was tested by fabricating solar cells (FTO/c-TiO2/FA0.85MA0.15Pb(I0.85Br0.15)3/CuSCN/Au) using the deposited films and comparing their performance. Cell efficiency close to 11.75% with a fill factor of 69% was obtained in the cell fabricated using the films deposited at 400°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NREL National Renewable Energy Laboratory, NREL Efficiency chart, http://Www.Nrel.Gov/Ncpv. (2015). http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.

  2. A. Elumalai, N. Mahmud, M. Wang, and D. Uddin, Energies 9, 861 (2016). https://doi.org/10.3390/en9110861.

    Article  CAS  Google Scholar 

  3. G. Das, S. Gu, C.M. Joshi, P.C. Yang, B. Aytug, T. Rouleau, D.B. Geohegan, and K. Xiao, J. Mater. Chem. A 4, 9685–9690 (2016). https://doi.org/10.1039/C6TA02105K.

    Article  CAS  Google Scholar 

  4. Z. Li, T.R. Klein, D.H. Kim, M. Yang, J.J. Berry, M.F.A.M. van Hest, and K. Zhu, Nat. Rev. Mater. 3, 18017 (2018). https://doi.org/10.1038/natrevmats.2018.17.

    Article  CAS  Google Scholar 

  5. Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, and J. You, Nat. Energy. 2, 16177 (2017). https://doi.org/10.1038/nenergy.2016.177.

    Article  CAS  Google Scholar 

  6. L.-C. Chen and Z.-L. Tseng, Nanostructured Sol. Cells. (2017). https://doi.org/10.5772/65056.

    Article  Google Scholar 

  7. L. Zhu, Z. Shao, J. Ye, X. Zhang, X. Pan, and S. Dai, Chem. Commun. 52, 970–973 (2016). https://doi.org/10.1039/C5CC08156D.

    Article  CAS  Google Scholar 

  8. W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, Science 350, 944–948 (2015). https://doi.org/10.1126/science.aad1015.

    Article  CAS  Google Scholar 

  9. J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, and S.H. Im, Energy Environ. Sci. 8, 1602–1608 (2015). https://doi.org/10.1039/C5EE00120J.

    Article  CAS  Google Scholar 

  10. J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, Nat. Nanotechnol. 9, 927–932 (2014). https://doi.org/10.1038/nnano.2014.181.

    Article  CAS  Google Scholar 

  11. S. Gharibzadeh, B.A. Nejand, A. Moshaii, N. Mohammadian, A.H. Alizadeh, R. Mohammadpour, V. Ahmadi, and A. Alizadeh, Chemsuschem 9, 1929–1937 (2016). https://doi.org/10.1002/cssc.201600132.

    Article  CAS  Google Scholar 

  12. P. Karuppuswamy, C. Hanmandlu, K.M. Boopathi, P. Perumal, C.C. Liu, Y.F. Chen, Y.C. Chang, P.C. Wang, C.S. Lai, and C.W. Chu, Sol. Energy Mater. Sol. Cells 169, 78–85 (2017).

    Article  CAS  Google Scholar 

  13. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Gratzel, and H. Han, Science 345, 295–298 (2014). https://doi.org/10.1126/science.1254763.

    Article  CAS  Google Scholar 

  14. H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345, 542–546 (2014). https://doi.org/10.1126/science.1254050.

    Article  CAS  Google Scholar 

  15. D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.C. Baena, J. Decoppet, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, ACSMs Guidelines 10th Ed 2017 Chp 3 Preexercise Evaluation.pdf, (2016). https://doi.org/10.1126/sciadv.1501170.

  16. T. Venkatachalam, K. Sakthivel, R. Renugadevi, R. Narayanasamy, P. Rupa, P. Predeep, M. Thakur, M.K.R. Varma (2011) in: AIP Conference Proceedings, vol. 5, pp. 764–766. https://doi.org/10.1063/1.3643673.

  17. T.M.L. Hitchman, J. Electroanal. Chem. 538–539 (n.d.) 165–172. https://doi.org/10.1016/S0022-0728(02)01252-4.

  18. M.J. Alam and D.C. Cameron, Surf. Coatings Technol. 142–144, 776–780 (2001). https://doi.org/10.1016/S0257-8972(01)01183-5.

    Article  Google Scholar 

  19. S. Sung, S. Park, W.-J. Lee, J. Son, C.-H. Kim, Y. Kim, D.Y. Noh, and M.-H. Yoon, ACS Appl. Mater. Interfaces. 7, 7456–7461 (2015). https://doi.org/10.1021/acsami.5b00281.

    Article  CAS  Google Scholar 

  20. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, and D.D. Dionysiou, Appl. Catal. B Environ. 125, 331–349 (2012). https://doi.org/10.1016/j.apcatb.2012.05.036.

    Article  CAS  Google Scholar 

  21. A. Dakka, J. Lafait, M. Abd-Lefdil, and C. Sella, M. J. Condensed Matter. vol. 2, N (n.d.).

  22. D. Pjević, M. Obradović, T. Marinković, A. Grce, M. Milosavljević, R. Grieseler, T. Kups, M. Wilke, and P. Schaaf, Phys. B Condens. Matter. 463, 20–25 (2015). https://doi.org/10.1016/j.physb.2015.01.037.

    Article  CAS  Google Scholar 

  23. P. Evans, M.E. Pemble, and D.W. Sheel, Chem. Mater. 18, 5750–5755 (2006). https://doi.org/10.1021/cm060816k.

    Article  CAS  Google Scholar 

  24. C. Edusi, G. Sankar, and I.P. Parkin, Chem. Vap. Depos. 18, 126–132 (2012). https://doi.org/10.1002/cvde.201106961.

    Article  CAS  Google Scholar 

  25. T. Huang, W. Huang, C. Zhou, Y. Situ, and H. Huang, Surf. Coat. Technol. 213, 126–132 (2012). https://doi.org/10.1016/j.surfcoat.2012.10.033.

    Article  CAS  Google Scholar 

  26. C. Zhou, J. Ouyang, and B. Yang, Mater. Res. Bull. 48, 4351–4356 (2013). https://doi.org/10.1016/j.materresbull.2013.07.016.

    Article  CAS  Google Scholar 

  27. V.L. Pool, B. Dou, D.G. Van Campen, T.R. Klein-Stockert, F.S. Barnes, S.E. Shaheen, M.I. Ahmad, M.F.A.M. van Hest, and M.F. Toney, Nat. Commun. 8, 14075 (2017). https://doi.org/10.1038/ncomms14075.

    Article  CAS  Google Scholar 

  28. V.E. Madhavan, I. Zimmermann, C. Roldán-Carmona, G. Grancini, M. Buffiere, A. Belaidi, and M.K. Nazeeruddin, ACS Energy Lett. 1, 1112–1117 (2016). https://doi.org/10.1021/acsenergylett.6b00501.

    Article  CAS  Google Scholar 

  29. H. Borchert, E.V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel, and H. Weller, Langmuir 21, 1931–1936 (2005). https://doi.org/10.1021/la0477183.

    Article  CAS  Google Scholar 

  30. D.G. Stavenga, Mater. Today Proc. 1, 109–121 (2014). https://doi.org/10.1016/j.matpr.2014.09.007.

    Article  Google Scholar 

  31. A.S. Bakri, M.Z. Sahdan, F. Adriyanto, N.A. Raship, N.D.M. Said, S.A. Abdullah, and M.S. Rahim, in: AIP Conf. Proc. 1788 (2017). https://doi.org/10.1063/1.4968283.

  32. A.J. Bosman and E.E. Havinga, Phys. Rev. 129, 1593–1600 (1963). https://doi.org/10.1103/PhysRev.129.1593.

    Article  CAS  Google Scholar 

  33. R. Wu, B. Yang, J. Xiong, C. Cao, Y. Huang, F. Wu, J. Sun, C. Zhou, H. Huang, and J. Yang, J. Renew. Sustain. Energy 7, 043105 (2015). https://doi.org/10.1063/1.4926578.

    Article  CAS  Google Scholar 

  34. K.D. B. Aktas, M. Albaskar, and S. Yalcin, Arch. Mater. Sci. Eng. 82 (n.d.) 57–61.

  35. D. Komaraiah, E. Radha, Y. Vijayakumar, J. Sivakumar, M.V.R. Reddy, and R. Sayanna, Mod. Res. Catal. 05, 130–146 (2016). https://doi.org/10.4236/mrc.2016.54011.

    Article  CAS  Google Scholar 

  36. I. Dundar, M. Krichevskaya, A. Katerski, and I.O. Acik, R. Soc. Open Sci. 6, 181578 (2019). https://doi.org/10.1098/rsos.181578.

    Article  CAS  Google Scholar 

  37. M. Okuya, N.A. Prokudina, K. Mushika, and S. Kaneko, J. Eur. Ceram. Soc. 19, 903–906 (1999). https://doi.org/10.1016/S0955-2219(98)00341-0.

    Article  CAS  Google Scholar 

  38. R. Songtanasit, T. Taychatanapat, and S. Chatraphorn, J. Phys: Conf. Ser. 901, 012161 (2017). https://doi.org/10.1088/1742-6596/901/1/012161.

    Article  Google Scholar 

  39. C. Li, Y. Li, Y. Xing, Z. Zhang, X. Zhang, Z. Li, Y. Shi, T. Ma, R. Ma, K. Wang, and J. Wei, ACS Appl. Mater. Interfaces. 7, 15117–15122 (2015). https://doi.org/10.1021/acsami.5b01959.

    Article  CAS  Google Scholar 

  40. S. Janitabar-Darzi, A.R. Mahjoub, and A. Nilchi, Phys. E Low-Dimens. Syst. Nanostruct. 42, 176–181 (2009). https://doi.org/10.1016/j.physe.2009.10.006.

    Article  CAS  Google Scholar 

  41. P. Makuła, M. Pacia, and W. Macyk, J. Phys. Chem. Lett. 9, 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892.

    Article  CAS  Google Scholar 

  42. N.C. Raut, T. Mathews, P. Chandramohan, M.P. Srinivasan, S. Dash, and A.K. Tyagi, Mater. Res. Bull. 46, 2057–2063 (2011). https://doi.org/10.1016/j.materresbull.2011.06.043.

    Article  CAS  Google Scholar 

  43. T. Supasai, N. Henjongchom, I.-M. Tang, F. Deng, and N. Rujisamphan, Sol. Energy 136, 515–524 (2016). https://doi.org/10.1016/j.solener.2016.07.035.

    Article  CAS  Google Scholar 

  44. G.A. Sepalage, S. Meyer, A.R. Pascoe, A.D. Scully, U. Bach, Y.-B. Cheng, and L. Spiccia, Nano Energy 32, 310–319 (2017). https://doi.org/10.1016/j.nanoen.2016.12.043.

    Article  CAS  Google Scholar 

  45. A.K. Baranwal, H. Kanda, N. Shibayama, and S. Ito, Sustain. Energy Fuels. 2, 2778–2787 (2018). https://doi.org/10.1039/C8SE00450A.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Imteyaz Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Aftab, A. & Ahmad, M.I. Compact Titania Films by Spray Pyrolysis for Application as ETL in Perovskite Solar Cells. J. Electron. Mater. 49, 7159–7167 (2020). https://doi.org/10.1007/s11664-020-08464-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08464-5

Keywords

Navigation