Skip to main content
Log in

Ruthenium(II) Complex Based Photodiode for Organic Electronic Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, the electrical and photoresponse properties of a photovoltaic device with Ruthenium(II) complex interfacial thin film were investigated. Heteroleptic Ru(II) complex including bidentate and tridentate ligands thin film was coated on n-Si substrate by the spin coating technique. From current–voltage (IV) measurements of an Au/Ru(II)/n-Si photodiode, it is observed that the reverse bias current under light is higher than that of the current in the dark. This indicates that the photodiode exhibits a photoconducting characteristic. The transient measurements such as photocurrent, photocapacitance and photoconductance were performed under various illumination conditions. These measurements indicate that the photodiode has a high photoresponsivity. The electrical parameters such as barrier height (Φb), ideality factor (n) and series resistance (R s) of the photodiode were determined from the analysis of IV characteristics. Moreover, the capacitance/conductance–voltage characteristics of the photodiode highly depend on both voltage and frequency. Results show that the heterojunction can be used for various optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Xu, N.J. Zhong, Y.Y. Xie, H.L. Huang, G.B. Jiang, and Y.J. Liu, PLoS ONE 9, 96082 (2014).

    Article  Google Scholar 

  2. K.V. Munthali, C. Theron, F.D. Auret, S.M.M. Coelho, and E. Njoroge, J. Electron. Mater. 44, 3265 (2015).

    Article  Google Scholar 

  3. A. Tataroglu, O. Dayan, N. Ozdemir, Z. Serbetci, A.A. Al-Ghamdi, A. Dere, F. El-Tantawy, and F. Yakuphanoglu, Dyes Pigments 132, 64 (2016).

    Article  Google Scholar 

  4. J. Cheng, T. Wang, J. Pan, and X. Lu, J. Electron. Mater. 45, 4067 (2016).

    Article  Google Scholar 

  5. O. Dayan, S. Dayan, I. Kani, and B. Cetinkaya, Appl. Organometal. Chem. 26, 663 (2012).

    Article  Google Scholar 

  6. I. Dragutan, V. Dragutan, and A. Demonceau, Molecules 20, 17244 (2015).

    Article  Google Scholar 

  7. K.N. Kumar and R. Ramesh, Polyhedron 24, 1885 (2005).

    Article  Google Scholar 

  8. M. Soylu, I. Orak, O. Dayan, and Z. Serbetci, Microelectron. Reliab. 55, 2685 (2015).

    Article  Google Scholar 

  9. S. Gunnaz, N. Ozdemir, S. Dayan, O. Dayan, and B. Cetinkaya, Organometallics 30, 4165 (2011).

    Article  Google Scholar 

  10. E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Oxford: Clarendon, 1988).

    Google Scholar 

  11. G.F. Dalla Betta, Advances in Photodiodes (New Delhi: InTech, 2011).

    Book  Google Scholar 

  12. J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures (New York: Cambridge University Press, 2003).

    Book  Google Scholar 

  13. M. Soylu and H.S. Kader, J. Electron. Mater. 45, 5756 (2016).

    Article  Google Scholar 

  14. F.A. Garcés, R. Urteaga, L.N. Acquaroli, R.R. Koropecki, and R.D. Arce, Nanoscale Res. Lett. 7, 419 (2012).

    Article  Google Scholar 

  15. M.L. Bourqui, L. Béchou, O. Gilard, Y. Deshayes, P. Del Vecchio, L.S. Howc, F. Rosala, Y. Ousten, and A. Touboul, Microelectron. Reliab. 48, 1202 (2008).

    Article  Google Scholar 

  16. R.T. Tung, Phys. Rev. B 64, 205310 (2001).

    Article  Google Scholar 

  17. J.H. Werner and H.H. Güttler, J. Appl. Phys. 69, 1522 (1991).

    Article  Google Scholar 

  18. P.P. Thapaswini, R. Padma, N. Balaram, B. Bindu, and V.R. Reddy, Superlattices Microstruct. 93, 82–91 (2016).

    Article  Google Scholar 

  19. A. Taha, A.A.M. Farag, O.M.I. Adly, N. Roushdy, M. Shebl, and H.M. Ahmed, J. Mol. Struct. 1142, 66 (2017).

    Article  Google Scholar 

  20. R. Nouchi, J. Appl. Phys. 116, 184505 (2014).

    Article  Google Scholar 

  21. N.M. Khusayfan, J. Alloys Compd. 666, 501 (2016).

    Article  Google Scholar 

  22. H. Norde, J. Appl. Phys. 50, 5052 (1979).

    Article  Google Scholar 

  23. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  Google Scholar 

  24. A. Alyamani, A. Tataroglu, L. El Mir, A.A. Al-Ghamdi, H. Dahman, W.A. Farooq, and F. Yakuphanoglu, Appl. Phys. A 122, 297 (2016).

    Article  Google Scholar 

  25. R.L. Gao, Y.S. Chen, J.R. Sun, Y.G. Zhao, J.B. Li, and B.G. Shen, J. Appl. Phys. 113, 183510 (2013).

    Article  Google Scholar 

  26. S. Meraz-Dávila, I. Chávez-Urbiola, C.E. Pérez-García, A. Sánchez-Martínez, S.A. Campos-Montiel, C.G. Alvarado-Beltrán, Y.V. Vorobiev, and R. Ramírez-Bon, Int. J. Electrochem. Sci. 11, 2962 (2016).

    Article  Google Scholar 

  27. Z.-M. Liao, C. Hou, L.-P. Liu, and D.-P. Yu, Nanoscale Res. Lett. 5, 926 (2010).

    Article  Google Scholar 

  28. R.K. Gupta, Ahmed A. Al-Ghamdi, F. El-Tantawy, W.A. Farooq, and F. Yakuphanoglu, Mater. Lett. 134, 149 (2014).

    Article  Google Scholar 

  29. C. Casteleiro, R. Schwarz, U. Mardolcar, A. Maçarico, J. Martins, M. Vieira, F. Wuensch, M. Kunst, E. Morgado, P. Stallinga, and H.L. Gomes, Thin Solid Films 516, 5118 (2008).

    Article  Google Scholar 

  30. Y. Oyama and J.-I. Nishizawa, J. Appl. Phys. 97, 033705 (2005).

    Article  Google Scholar 

  31. P.Z. Saheb, S. Asokan, and K.A. Gowda, J. Optoelectron. Adv. Mater. 5, 1215 (2003).

    Google Scholar 

  32. E.H. Nicollian and J.R. Brews, MOS Physics and Technology (New York: Wiley, 1982).

    Google Scholar 

  33. I. Hussain, M.Y. Soomro, N. Bano, O. Nur, and M. Willander, J. Appl. Phys. 112, 064506 (2012).

    Article  Google Scholar 

  34. M. Sharma and S.K. Tripathi, Mater. Sci. Semicond. Process. 41, 155 (2016).

    Article  Google Scholar 

  35. E.H. Nicollian and A. Goetzberger, Bell Syst. Tech. J. 46, 1055 (1967).

    Article  Google Scholar 

  36. B. Akkal, Z. Benamara, B. Gruzza, and L. Bideux, Vacuum 57, 219 (2000).

    Article  Google Scholar 

  37. Z.A. Alahmed, D.T. Phan, G.S. Chung, and F. Yakuphanoglu, Superlattices Microstruct. 63, 36 (2013).

    Article  Google Scholar 

  38. E. Ayyildiz, Ç. Nuhoglu, and A. Türüt, J. Electron. Mater. 31, 119 (2002).

    Article  Google Scholar 

  39. E.H. Nicollian, A. Goetzberger, and A.D. Lopez, Solid State Electron. 12, 937 (1969).

    Article  Google Scholar 

  40. P. Cova and A. Singh, Solid State Electron. 33, 11 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Soylu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tataroglu, A., Ocaya, R., Dere, A. et al. Ruthenium(II) Complex Based Photodiode for Organic Electronic Applications. J. Electron. Mater. 47, 828–833 (2018). https://doi.org/10.1007/s11664-017-5882-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5882-1

Keywords

Navigation