Skip to main content
Log in

Structures and Mechanical and Electronic Properties of the Ti2CO2 MXene Incorporated with Neighboring Elements (Sc, V, B and N)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ti2CO2, as the representative MXene with semiconducting characteristics and ultrahigh carrier mobility, has attracted increasing attention in material science. Herein, various Ti2CO2 alloys with Ti displaced by neighboring elements Sc and V, or C by B and N are investigated in this paper based on the first-principles density functional calculations. The structures and mechanical and electronic properties are thoroughly studied for the configurations with varying alloying atom concentrations. The choices of alloying elements play a critical role in determining the lattice parameters and layer thickness. The Sc substitutions generally increase the lattice parameter but decrease the layer thickness. In contrast, the introduction of N presents slight influence on the structural parameters. The mechanical strength shows remarkable variations by introducing the alloying elements. The maximum elastic constant c 11 is determined to be 425 GPa in (Ti0.25V0.75)2CO2, and the corresponding minimum value is only 104 GPa found in (Ti0.125Sc0.875)2CO2. With respect to the electronic properties, although B and Sc both present one less valance electron compared to their replaced elements C and Ti, it is easier to realize the p-type semiconductor in the configurations containing Sc. Both the V and N substitutions are capable of generating n-type semiconductors, but their optimal stoichiometric compositions are quite different. Among all the configurations investigated, only (Ti0.5V0.5)2CO2 and (Ti0.375V0.625)2CO2 are magnetic, with their magnetism determined to be 2.61 uB/cell and 1.52 uB/cell, respectively. Thus, the method of alloying neighboring elements provides an effective approach in manipulating the physical properties of the Ti2CO2, which might widen the possible applications of MXene materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  2. C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).

    Article  Google Scholar 

  3. A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).

    Article  Google Scholar 

  4. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005).

    Article  Google Scholar 

  5. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Appl. Phys. Lett. 97, 223109 (2010).

    Article  Google Scholar 

  6. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).

    Article  Google Scholar 

  7. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, and Y. Zhang, Nat. Nanotechnol. 9, 372 (2014).

    Article  Google Scholar 

  8. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M.W. Barsoum, Adv. Mater. 23, 4248 (2011).

    Article  Google Scholar 

  9. M.W. Barsoum, Prog. Solid State Chem. 28, 201 (2000).

    Article  Google Scholar 

  10. M.W. Barsoum and M. Radovic, Annu. Rev. Mater. Res. 41, 195 (2011).

    Article  Google Scholar 

  11. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M.W. Barsoum, ACS Nano 6, 1322 (2012).

    Article  Google Scholar 

  12. M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, and M.W. Barsoum, J. Am. Chem. Soc. 135, 15966 (2013).

    Article  Google Scholar 

  13. J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.-Q. Zhao, E.J. Moon, J. Pitock, J. Nanda, S.J. May, Y. Gogotsi, and M.W. Barsoum, Adv. Funct. Mater. 26, 3118 (2016).

    Article  Google Scholar 

  14. B.X. Anasori, Y. Beidaghi, M. Lu, J. Hosler, B.C. Hultman, L. Kent, P.R.C. Kent, Y. Gogotsi, and M.W. Barsoum, ACS Nano 9, 9507 (2015).

    Article  Google Scholar 

  15. M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L.M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S.J.L. Billinge, and M.W. Barsoum, Chem. Commun. 50, 9517 (2014).

    Article  Google Scholar 

  16. R. Meshkian, L.-Å. Näslund, J. Halim, J. Lu, M.W. Barsoum, and J. Rosen, Scr. Mater. 108, 147 (2015).

    Article  Google Scholar 

  17. P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota, P.L. Walsh, M. Zhao, V.B. Shenoy, M.W. Barsoum, and Y. Gogotsi, Nanoscale 8, 11385 (2016).

    Article  Google Scholar 

  18. C. Xu, L.B. Wang, Z.B. Liu, L. Chen, J.K. Guo, N. Kang, X.L. Ma, H.M. Cheng, and W.C. Ren, Nat. Mater. 14, 1135 (2015).

    Article  Google Scholar 

  19. J. Zhou, X.-H. Zha, F.Y. Chen, Q. Ye, P. Eklund, S. Du, and Q. Huang, Angew. Chem. Int. Ed. 55, 5008 (2016).

    Article  Google Scholar 

  20. M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, and Y. Gogotsi, Science 341, 1502 (2013).

    Article  Google Scholar 

  21. M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, and M.W. Barsoum, Nature 516, 78 (2014).

    Google Scholar 

  22. M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, and Y. Gogotsi, Adv. Mater. 28, 1517 (2016).

    Article  Google Scholar 

  23. F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, and Y. Gogotsi, Science 353, 1137 (2016).

    Article  Google Scholar 

  24. Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, and Y. Tian, J. Am. Chem. Soc. 136, 4113 (2014).

    Article  Google Scholar 

  25. L. Wang, L. Yuan, K. Chen, Y. Zhang, Q. Deng, S. Du, Q. Huang, L. Zheng, J. Zhang, Z. Chai, M.W. Barsoum, X. Wang, and W. Shi, ACS Appl. Mater. Interfaces 8, 16396 (2016).

    Article  Google Scholar 

  26. Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, and Y. Gogotsi, Proc. Natl. Acad. Sci. USA 111, 16676 (2014).

    Article  Google Scholar 

  27. Y. Lee, S.B. Cho, and Y.-C. Chung, ACS Appl. Mater. Interfaces 6, 14724 (2014).

    Article  Google Scholar 

  28. C. Ling, L. Shi, Y. Ouyang, Q. Chen, and J. Wang, Adv. Sci. 3, 1600180 (2016).

    Article  Google Scholar 

  29. B. Xu, M. Zhu, W. Zhang, X. Zhen, Z. Pei, Q. Xue, C. Zhi, and P. Shi, Adv. Mater. 28, 3333 (2016).

    Article  Google Scholar 

  30. Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, X. Yu, K.-W. Nam, X.-Q. Yang, A.I. Kolesnikov, and P.R.C. Kent, J. Am. Chem. Soc. 136, 6385 (2014).

    Article  Google Scholar 

  31. S. Lai, J. Jeon, S.K. Jang, J. Xu, Y.J. Choi, J.-H. Park, E. Hwang, and S. Lee, Nanoscale 7, 19390 (2015).

    Article  Google Scholar 

  32. X.-H. Zha, Q. Huang, J. He, H. He, J. Zhai, J.S. Francisco, and S. Du, Sci. Rep. UK 6, 27971 (2016).

    Article  Google Scholar 

  33. M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, Adv. Funct. Mater. 23, 2185 (2013).

    Article  Google Scholar 

  34. X.-H. Zha, K. Luo, Q. Li, Q. Huang, J. He, X. Wen, and S. Du, EPL-Europhys. Lett. 111, 26007 (2015).

    Article  Google Scholar 

  35. L.-Y. Gan, D. Huang, and U. Schwingenschlögl, J. Mater. Chem A 1, 13672 (2013).

    Article  Google Scholar 

  36. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  37. X.-H. Zha, J. Zhou, Y. Zhou, Q. Huang, J. He, J.S. Francisco, K. Luo, and S. Du, Nanoscale 8, 6110 (2016).

    Article  Google Scholar 

  38. A.N. Gandi, H.N. Alshareef, and U. Schwingenschlögl, Chem. Mater. 28, 1647 (2016).

    Article  Google Scholar 

  39. X.-F. Yu, Y.-C. Li, J.-B. Cheng, Z.-B. Liu, Q.-Z. Li, W.-Z. Li, X. Yang, and B. Xiao, ACS Appl. Mater. Interfaces 7, 13707 (2015).

    Article  Google Scholar 

  40. Y. Ando and S. Watanabe, Appl. Phys. Exp. 9, 015001 (2016).

    Article  Google Scholar 

  41. X. Liang, A. Garsuch, and L.F. Nazar, Angew. Chem. Int. Ed. 54, 3907 (2015).

    Article  Google Scholar 

  42. X. Gao, X. Zhang, S. Zhao, Q. Huang, and J. Xue, Phys. Chem. Chem. Phys. 18, 228 (2016).

    Article  Google Scholar 

  43. L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, and C.N.R. Rao, Adv. Mater. 21, 4726 (2009).

    Google Scholar 

  44. X.-H. Zha, R.-Q. Zhang, and Z. Lin, J. Chem. Phys. 141, 064705 (2014).

    Article  Google Scholar 

  45. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  46. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  47. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

    Article  Google Scholar 

  48. Y. Le Page and P. Saxe, Phys. Rev. B, 65, 104104 (2002).

  49. T. Li, Phys. Rev. B 85, 235407 (2012).

    Article  Google Scholar 

  50. X.-H. Zha, J. Yin, Y. Zhou, Q. Huang, K. Luo, J. Lang, J.S. Francisco, J. He, and S. Du, J. Phys. Chem. C 120, 15082 (2016).

    Article  Google Scholar 

  51. A. Hassani, M.T.H. Mosavian, A. Ahmadpour, and N. Farhadian, Comput. Theor. Chem. 1084, 43 (2016).

    Article  Google Scholar 

  52. Y. Xie and P.R.C. Kent, Phys. Rev. B 87, 235441 (2013).

    Article  Google Scholar 

  53. J. Ziolkowski, J. Solid State Chem. 57, 269 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Key Research and Development Program of China (No. 2016YFB0700100), the National Natural Science of Foundations of China (Grant Nos. 11604346, 51502309, 21671195 and 91226202), the Ningbo Municipal Natural Science Foundation (No. 2016A610272), ITaP at Purdue University for computing resources and the Key Technology of Nuclear Energy, 2014, CAS Interdisciplinary Innovation Team.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Deng or Shiyu Du.

Additional information

Li Feng and Xian-Hu Zha have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Zha, XH., Luo, K. et al. Structures and Mechanical and Electronic Properties of the Ti2CO2 MXene Incorporated with Neighboring Elements (Sc, V, B and N). J. Electron. Mater. 46, 2460–2466 (2017). https://doi.org/10.1007/s11664-017-5311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5311-5

Keywords

Navigation