Skip to main content
Log in

Effects of Lu and Ni Substitution on Thermoelectric Properties of Ca3Co4O9+δ

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Effects of (Lu, Ni) co-doping on the thermoelectric properties of Ca3Co4O9+δ (CCO) have been systematically investigated from 20 K to 350 K. The electrical resistivity and thermopower of (Lu, Ni) co-doped samples increase, while their thermal conductivity is significantly depressed as compared to that of pristine CCO. The figure of merit (ZT) of co-doped samples is higher than those of Lu-doped samples and pristine CCO. A maximum ZT of 0.0185 is achieved at 350 K for Ca2.9Lu0.1Co3.9Ni0.1O9+δ . We demonstrate that the simultaneous increase of spin entropy and phonon scattering induced by (Lu, Ni) co-doping boosts ZT of CCO. This study indicates that (Lu, Ni) co-doping may promise an effective way to improve thermoelectric properties of the CCO system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).

    Article  Google Scholar 

  2. N.V. Nong, N. Pryds, S. Linderoth, and M. Ohtaki, Adv. Mater. 23, 2484 (2011).

    Article  Google Scholar 

  3. K. Koumoto, I. Terasaki, and R. Funahashi, MRS Bull. 31, 206 (2006).

    Article  Google Scholar 

  4. A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, and J. Hejtmanek, Phys. Rev. B 62, 166 (2000).

    Article  Google Scholar 

  5. Y. Wang, Y. Sui, J.G. Cheng, X.J. Wang, J.P. Miao, Z.G. Liu, Z.N. Qian, and W.H. Su, J. Alloys Compd. 448, 1 (2008).

    Article  Google Scholar 

  6. N. Prasoetsopha, S. Pinitsoontorn, A. Bootchanont, P. Kidkhunthod, P. Screpusharawoot, T. Kamwanna, V. Amornkibamrung, K. Kurosaki, and S. Yamanaka, J. Solid State Chem. 204, 257 (2013).

    Article  Google Scholar 

  7. M. Shikano and R. Funahashi, Appl. Phys. Lett. 82, 1851 (2003).

    Article  Google Scholar 

  8. R. Tian, R. Donelson, C.D. Ling, P.E.R. Blanchard, T. Zhang, D.W. Chu, T.T. Tan, and S. Li, J. Phys. Chem. C 117, 13382 (2013).

    Article  Google Scholar 

  9. Y. Masuda, D. Nagahama, H. Itahara, T. Tani, W.S. Seo, and K. Koumoto, J. Mater. Chem. 5, 1094 (2003).

    Article  Google Scholar 

  10. M. Mikami, N. Ando, and R. Funahashi, J. Solid State Chem. 178, 2186 (2005).

    Article  Google Scholar 

  11. T.F. Yin, D.W. Liu, Y. Ou, F.Y. Ma, S.H. Xie, J.F. Li, and J.Y. Li, J. Phys. Chem. C 114, 10061 (2010).

    Article  Google Scholar 

  12. Y. Wang, L.X. Xu, Y. Sui, X.J. Wang, and J.G. Cheng, W.H Su. Appl. Phys. Lett. 97, 062114 (2010).

    Article  Google Scholar 

  13. G.D. Tang, Z.H. Wang, X.N. Xu, L.K. Qiu, and Y.W. Du, J. Appl. Phys. 107, 053715 (2010).

    Article  Google Scholar 

  14. Y. Song and C.W. Nan, Physica B 406, 2919 (2011).

    Article  Google Scholar 

  15. F.P. Zhang, X. Zhang, Q.M. Lu, J.X. Zhang, Y.Q. Liu, and G.Z. Zhang, Solid State Sci. 13, 1443 (2011).

    Article  Google Scholar 

  16. G. Constantinescu, Sh Rasekh, M.A. Torres, J.C. Diez, M.A. Madre, and A. Sotelo, J. Alloys Compd. 577, 511 (2013).

    Article  Google Scholar 

  17. S.W. Li, R. Funahashi, I. Matsubara, K. Ueno, S. Sodeoka, and H. Yamada, Chem. Mater. 12, 2424 (2000).

    Article  Google Scholar 

  18. S.W. Li, R. Funahashi, I. Matsubara, H. Yamada, K. Ueno, and S. Sodeoka, Ceram. Int. 27, 321 (2001).

    Article  Google Scholar 

  19. I. Matsubara, R. Funahashi, T. Takeuchi, and Y. Zhou, International Conference of TE, Vol. 172 (2001).

  20. I. Matsubara, R. Funahashi, T. Takeuchi, and S. Sodeoka, J. Appl. Phys. 90, 462 (2001).

    Article  Google Scholar 

  21. J. Nan, J. Wu, Y. Deng, and C.W. Nan, Solid State Commun. 124, 243 (2002).

    Article  Google Scholar 

  22. G. Xu, R. Funahashi, M. Shikano, I. Matsubara, and Y. Zhou, Appl. Phys. Lett. 80, 3760 (2002).

    Article  Google Scholar 

  23. H.Y. Xu, H. Wang, Y.Q. Meng, and H. Yan, Solid State Commun. 130, 465 (2004).

    Article  Google Scholar 

  24. Y. Wang, Y. Sui, X.J. Wang, W. Su, and X. Liu, J. Appl. Phys. 107, 033708 (2010).

    Article  Google Scholar 

  25. Q. Yao, D.L. Wang, L.D. Chen, X. Shi, and M. Zhou, J. Appl. Phys. 97, 103905 (2005).

    Article  Google Scholar 

  26. B.C. Zhao, Y.P. Sun, and W.H. Song, J. Appl. Phys. 99, 073906 (2006).

    Article  Google Scholar 

  27. Y. Wang, Y. Sui, P. Ren, L. Wang, X.J. Wang, W.H. Su, and H.J. Fan, Chem. Mater. 22, 1155 (2010).

    Article  Google Scholar 

  28. S. Pinitsoontorn, N. Lerssongkram, N. Keawprak, and V. Amornkitbamrung, J. Mater. Sci. Mater. Electron. 23, 1050 (2012).

    Article  Google Scholar 

  29. Y. Ou, J. Peng, F. Li, Z.X. Yu, F.Y. Ma, S.H. Xie, J.F. Li, and J.Y. Li, J. Alloys Compd. 526, 139 (2012).

    Article  Google Scholar 

  30. S. Butt, Y.C. Liu, J.L. Lan, K. Shehzad, B. Zhn, Y.H. Lin, and C.W. Nan, J. Alloys Compd. 588, 277 (2014).

    Article  Google Scholar 

  31. Y.Q. Zhou, I. Matsubara, S. Horii, T. Takeuchi, R. Funahashi, and M. Shikano, J. Appl. Phys. 93, 2653 (2003).

    Article  Google Scholar 

  32. H. Hao, L.M. Zhao, X. Hu, and Y. Liu, J. Mater. Sci. Technol. 25, 105 (2009).

    Google Scholar 

  33. M. Senthilkumar and R. Vijayaraghavan, Adv. Mater. Res. 584, 162 (2012).

    Article  Google Scholar 

  34. A. Bhaskar, R.Z. Lin, and C.J. Liu, Energy Convers. Manag. 76, 63 (2013).

    Article  Google Scholar 

  35. A. Bhaskar, Y.C. Huang, and C.J. Liu, J. Electron. Mater. 43, 535 (2014).

    Article  Google Scholar 

  36. A. Bhaskar, Z.R. Lin, and C.J. Liu, J. Electroceram. 32, 269 (2014).

    Article  Google Scholar 

  37. A. Bhaskar, Y.C. Huang, and C.J. Liu, J. Mater. Sci. Mater. Electron. 25, 249 (2014).

    Article  Google Scholar 

  38. R.M. Tian, R. Donelson, C.D. Ling, P.E.R.B. Blanchard, T.S. Zhang, D.W. Chu, T.T. Tan, and S. Li, J. Alloys Compd. 615, 311 (2014).

    Article  Google Scholar 

  39. A. Bhaskar, Z.R. Yang, and C.J. Liu, Ceram. Int. 41, 10456 (2015).

    Article  Google Scholar 

  40. G.D. Tang, W.C. Yang, Y. He, and Z.H. Wang, Ceram. Int. 41, 7115 (2015).

    Article  Google Scholar 

  41. G.D. Tang, Z.H. Wang, X.N. Xu, L. Qiu, L. Xing, and Y.W. Du, J. Mater. Sci. 45, 3969 (2010).

    Article  Google Scholar 

  42. G.D. Tang, F. Xu, Y. He, L.Y. Wang, L. Qiu, and Z.H. Wang, Phys. State Solidi B 250, 1327 (2013).

    Article  Google Scholar 

  43. Y.Y. Wang, N.S. Rogado, R.J. Cava, and N.P. Ong, Nature 423, 425 (2003).

    Article  Google Scholar 

  44. G.D. Tang, T. Yang, X.N. Xu, C.P. Tang, L. Qiu, Z.D. Zhang, L.Y. Lv, Z.H. Wang, and Y.W. Du, Appl. Phys. Lett. 97, 032108 (2010).

    Article  Google Scholar 

  45. S. Pinitsoontorn, N. Lerssongkram, A. Harnwunggoung, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 503, 431 (2010).

    Article  Google Scholar 

  46. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  47. S. Demirel, A. Aksan, and S. Altin, J. Mater. Sci. Mater. Electron. 23, 2251 (2012).

    Article  Google Scholar 

  48. H.J. Goldsmid, Introduction to Thermoelectricity, ed. R. Hull (Berlin: Springer, 2009), pp. 31–32.

    Google Scholar 

  49. G.D. Tang, W.C. Yang, Y.Y. Jiang, Z.C. Wu, and Z.H. Wang, J. Mater. Sci. 50, 1746 (2015).

    Article  Google Scholar 

  50. W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B 62, 6869 (2000).

    Article  Google Scholar 

  51. G.D. Tang, F. Xu, D.W. Zhang, and Z.H. Wang, Ceram. Int. 39, 1341 (2013).

    Article  Google Scholar 

  52. G.D. Tang, X.N. Xu, C.P. Tang, Z.H. Wang, Y. He, L. Qiu, L.Y. Lv, L. Xing, and Y.W. Du, Europhys. Lett. 91, 17002 (2010).

    Article  Google Scholar 

  53. G.D. Tang, C.P. Tang, X.N. Xu, Y. He, L. Qiu, L.Y. Lv, Z.H. Wang, and Y.W. Du, Solid State Commun. 150, 1706 (2010).

    Article  Google Scholar 

  54. S. Butt, W. Xu, W.Q. He, Q. Tan, G.K. Ren, and Y.H. Lin, J. Mater. Chem. A 2, 19479 (2014).

    Article  Google Scholar 

  55. E. Meza, J. Ortiz, D. Ruiz-Leon, J.F. Marco, and J.L. Gautier, Mater. Lett. 70, 189 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Qian, H., Gan, J. et al. Effects of Lu and Ni Substitution on Thermoelectric Properties of Ca3Co4O9+δ . J. Electron. Mater. 45, 4171–4176 (2016). https://doi.org/10.1007/s11664-016-4666-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4666-3

Keywords

Navigation