Skip to main content
Log in

On the Thermoelectric Properties of Zintl Compounds Mg3Bi2−x Pn x (Pn = P and Sb)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A series of Zintl compounds Mg3Bi2-x Pn x (Pn = P and Sb) have been synthesized by the solid-state reaction method. While Sb can be substituted to a level as high as x = 1.0, P can be substituted only up to x = 0.5. The thermoelectric potential of these compounds has been evaluated by measuring resistivity (ρ), Seebeck (α) and Hall coefficients, and thermal conductivity between 80 K and 850 K. The measured resistivity and Seebeck coefficient values are consistent with those expected for small-bandgap semiconductors. Hall measurements suggest that the carriers are p type with concentration (p) increasing from ~1019 cm−3 to ~1020 cm−3 as the Bi content is increased. The Hall mobility decreases with increasing temperature (T) and reaches a more or less similar value (~45 cm2/V s) for all substituted compositions at room temperature. Due to mass defect scattering, the lattice thermal conductivity (κ L) is decreased to a minimum of ~1.2 W/m K in Mg3BiSb. The power factor (α 2/ρ) is found to be rather low and falls in the range 0.38 mW/m K2 to 0.66 mW/m K2. As expected, at a high temperature of 825 K, the total thermal conductivity (κ) of Mg3BiSb reaches an impressive value of ~1.0 W/m K. The highest dimensionless figure of merit (ZT) is realized for Mg3BiSb and is ~0.4 at 825 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wood, Rep. Prog. Phys. 51, 459 (1988).

  2. Q.-G. Cao, H. Zhang, M.-B. Tang, H.-H. Chen, X.-X. Yang, Y. Grin, and J.-T. Zhao, J. Appl. Phys. 107, 053714 (2010).

    Article  Google Scholar 

  3. S.-J. Kim, J.R. Ireland, C.R. Kannewurf, and M.G. Kanatzidis, J. Solid State Chem. 155, 55 (2000).

    Article  CAS  Google Scholar 

  4. W.G. Zeier, A. Zevalkink, E. Schechtel, W. Tremel, and G.J. Snyder, J. Mater. Chem. 22, 9826 (2012).

    Article  CAS  Google Scholar 

  5. V. Ponnambalam, S. Lindsey, W. Xie, D. Thompson, F. Drymiotis, and T.M. Tritt, J. Phys. D Appl. Phys. 44, 155406 (2011).

    Article  Google Scholar 

  6. V. K. Zaitsev, M. I. Fedorov, I. S. Eremin, and E. A. Gurieva, Thermoelectrics Handbook: Macro to Nano-Structured Materials (CRC, New York, 2005), Chap. 29.

  7. T. Kajikawa, N. Kimura and T.YoKoyama, Proc. 22 nd Int. Conf. Thermoelectrics, 305 (2003).

  8. C.L. Condron, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, J. Solid State Chem. 179, 2252 (2006).

    Article  CAS  Google Scholar 

  9. F. Ahmadpour, T. Kolodiazhnyi, and Y. Mozharivskyj, J. Solid State Chem. 180, 2420 (2007).

    Article  CAS  Google Scholar 

  10. M.M.-Ripoll, A. Haase, and G. Brauer, Acta. Cryst. B 30, 2006 (1974).

  11. B. Predel, Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys in Landolt-Boernstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group IV, Vol. 5, ed. O. Madelung (Springer, Berlin, 1991–1998).

  12. P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases 2nd ed., Vol. 1–4, (ASM International, Ohio, 1991).

  13. G. Busch, F. Hulliger, and U. Winkler, Helv. Phys. Acta 27, 249 (1954).

    Google Scholar 

  14. T.S. Moss, Proc. Phys. Soc. (London) B 63, 982 (1950).

    Google Scholar 

  15. Y. Imai and A. Watanabe, J. Mater. Sci. 41, 2435 (2006).

    Article  CAS  Google Scholar 

  16. R.P. Ferrier, D.J. Herrell, and J. Non-Cryst, Solids 2, 278 (1970).

    CAS  Google Scholar 

  17. Y.I. Ravich, B.A. Efimova, and I.A. Smirov, Semiconducting Lead Chalcogenides (New York: Plenum, 1970), p. 155.

    Google Scholar 

  18. H.J. Goldsmid and J.W. Sharp, J. Electron. Mater. 28, 869 (1999).

    Article  CAS  Google Scholar 

  19. G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC Press, 1995) p. 419.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ponnambalam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponnambalam, V., Morelli, D.T. On the Thermoelectric Properties of Zintl Compounds Mg3Bi2−x Pn x (Pn = P and Sb). J. Electron. Mater. 42, 1307–1312 (2013). https://doi.org/10.1007/s11664-012-2417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2417-7

Keywords

Navigation