Skip to main content
Log in

Microstructure Simulation of the Nonuniform Shell for the Round Billet Continuous Casting

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To study the effect of nonuniform heat transfer on the grain structure of shells in molds, a micro and macroscopic model coupling heat transfer with dendritic growth was established based on the measured heat flux. Dendritic growth was modeled by using a cellular automaton technique and by considering solutal transport. The quasi-instantaneous nucleation model was introduced to address heterogeneous nucleation, which might occur at the mold wall and in the bulk of the liquid. The temperature field of the billet under the measured heat flux in the mold was calculated, and the initial solidification process and grain structure evolution of four domains at different angles from the inner arc were simulated. The effect of circumferential nonuniform heat transfer on the grain structure of the chill zone and columnar grains of the shell was discussed in detail. The relationship between the distribution of the primary dendrite spacings in different domains and locally measured heat flux was analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Liu and M. Zhu: ISIJ Int., 2006, vol. 46, pp. 1652–59.

    Article  CAS  Google Scholar 

  2. X. Wang, L. Tang, X. Zang, and M. Yao: J. Mater. Process. Technol., 2012, vol. 212, pp. 1811–8.

    Article  Google Scholar 

  3. J.O. Kristiansson: J. Therm. Stresses., 1984, vol. 7, pp. 209–26.

    Article  Google Scholar 

  4. L. Cai, X. Wang, N. Wang, and M. Yao: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 236–46.

    Article  Google Scholar 

  5. B.G. Thomas and L.F. Zhang: ISIJ Int., 2001, vol. 41, pp. 1181–93.

    Article  CAS  Google Scholar 

  6. W. Guo, L. Zhang, and M. Zhu: Steel Res. Int., 2010, vol. 81, pp. 265–77.

    Article  CAS  Google Scholar 

  7. C. Li and B.G. Thomas: Metall. Mater. Trans. B., 2004, vol. 35B, pp. 1151–72.

    Article  CAS  Google Scholar 

  8. F. Du, X. Wang, M. Yao, and X. Zhang: J. Mater. Process. Technol., 2014, vol. 214, pp. 2676–83.

    Article  CAS  Google Scholar 

  9. L. Beltran-Sanchez and D.M. Stefanescu: Metall. Mater. Trans. A., 2004, vol. 35A, pp. 2471–85.

    Article  CAS  Google Scholar 

  10. M.F. Zhu and D. Stefanescu: Acta Mater., 2007, vol. 55, pp. 1741–55.

    Article  CAS  Google Scholar 

  11. A. Karma: Phys. Rev. Lett., 2001, vol. 87, p. 115701.

    Article  CAS  Google Scholar 

  12. A. Karma and W. Rappel: Phys. Rev. E., 1998, vol. 57, pp. 4323–49.

    Article  CAS  Google Scholar 

  13. M. Yamazaki, Y. Natsume, H. Harada, and K. Ohsasa: ISIJ Int., 2006, vol. 46, pp. 903–8.

    Article  CAS  Google Scholar 

  14. S. Luo, M.Y. Zhu, and S. Louhenkilpi: ISIJ Int., 2012, vol. 52, pp. 823–30.

    Article  CAS  Google Scholar 

  15. W. Wang, C. Ji, S. Luo, and M. Zhu: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 200–12.

    Article  Google Scholar 

  16. Y. Man, H. Yin, and D. Fang: ISIJ Int., 2004, vol. 44, pp. 1696–704.

    Article  CAS  Google Scholar 

  17. H. Yin and M. Yao: J. Mater. Process. Technol., 2007, vol. 183, pp. 49–56.

    Article  CAS  Google Scholar 

  18. L. Beltran-Sanchez and D.M. Stefanescu: Metall. Mater. Trans. A., 2003, vol. 34A, pp. 367–82.

    Article  CAS  Google Scholar 

  19. P. Thevoz, J.L. Desbiolles, and M. Rappaz: Metall. Mater. Trans. A., 1989, vol. 20A, pp. 311–22.

    Article  CAS  Google Scholar 

  20. C.A. Gandin, M. Rappaz, and R. Tintillier: Metall. Trans. A., 1993, vol. 24, pp. 467–79.

    Article  Google Scholar 

  21. M. Rappaz and C.A. Gandin: Acta Metall. Mater., 1993, vol. 41, pp. 345–60.

    Article  CAS  Google Scholar 

  22. Y. Natsume and K. Ohsasa: ISIJ Int., 2014, vol. 54, pp. 415–21.

    Article  CAS  Google Scholar 

  23. W.L. Wang, S. Luo, and M.Y. Zhu: Metall. Mater. Trans. A., 2015, vol. 46A, pp. 396–406.

    Article  Google Scholar 

  24. M. Hu, C. Sun, H. Fang, and M. Zhu: Eur. Phys. J. E, 2020, vol. 43, art. no. 16.

    Article  CAS  Google Scholar 

  25. W.D. Huang, X.G. Geng, and Y.H. Zhou: J. Cryst. Growth., 1993, vol. 134, pp. 105–15.

    Article  CAS  Google Scholar 

  26. S.Z. Lu and J.D. Hunt: J. Cryst. Growth., 1992, vol. 123, pp. 17–34.

    Article  Google Scholar 

  27. X.F. Zhang and J.Z. Zhao: J. Cryst. Growth., 2014, vol. 391, pp. 52–8.

    Article  CAS  Google Scholar 

  28. W. Wang, P.D. Lee, and M. Mclean: Acta Mater., 2003, vol. 51, pp. 2971–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (51974056/51474047/51704073); the Fundamental Research Funds for the Central Universities and the Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province) are also gratefully acknowledged. Part of this work was performed using computational resources from Supercomputing Center of Dalian University of Technology.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XuDong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 31, 2021; accepted October 22, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Wang, X., Cai, L. et al. Microstructure Simulation of the Nonuniform Shell for the Round Billet Continuous Casting. Metall Mater Trans B 53, 273–283 (2022). https://doi.org/10.1007/s11663-021-02364-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02364-7

Navigation