Skip to main content
Log in

Formation of NO and SO2 in the Sintering Process of Iron Ores

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) and sulfur dioxide (SO2) are the major environmental pollutants being generated in the steel industry. More than half of NO and SO2 are emitted from sinter plants. Due to the catalytic effect of CaO in the sinter mix on the formation of NO and SO2, it might differ from that in the combustion of raw coals. In the combustion of raw coals, both NO and SO2 were formed in the temperature range of 473 K (200 °C) to 1623 K (1350 °C). In the case where the content of endogenous CaO in coal ash was high, the formation of SO2 was significantly reduced below 1473 K (1200 °C). In the case of the sinter mix, NO was formed in the temperature range of 473 K (200 °C) to 1173 K (900 °C) and the conversion of N to NO was increased by the catalytic effect of CaO in the sinter mix. Most of the SO2 was formed above 1473 K (1200 °C). The CaO present in the sinter mix reacted with the SO2 generated below 1473 K (1200 °C) to form CaSO4, the stability of which was maintained until 1473 K (1200 °C); thus, the conversion of S to SO2 was reduced. Based on the coal composition and functionalities of nitrogen and sulfur in coals, the indices of NO and SO2 were proposed to predict the conversion of N to NO and S to SO2, respectively. The increased heating rate shifted the formation temperature range of NO to higher temperatures and increased the formation of SO2 by the thermally activated decomposition of CaSO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.N. Armor: Catal. Today., 1995, vol. 26, pp. 99–105.

    Article  CAS  Google Scholar 

  2. P. Zelenka, W. Cartellieri, and P. Herzog: Appl. Catal. B: Environ., 1996, vol. 10, pp. 3–28.

    Article  CAS  Google Scholar 

  3. Y.S. Kang, S.S. Kim, H.D. Lee, J.K. Kim, and S.C. Hong: Appl. Chem. Eng., 2011, vol. 22(2), pp. 219–23.

    CAS  Google Scholar 

  4. G. Li, C. Liu, M. Rao, Z. Fan, Z. You, Y. Zhang, and T. Jiang: ISIJ Int., 2014, vol. 54(1), pp. 37–42.

    Article  CAS  Google Scholar 

  5. H. Yu, C. Zhang, and H. Wang: ISIJ Int., 2015, vol. 55(9), pp. 1876–81.

    Article  CAS  Google Scholar 

  6. H. Hui, H. Hao, Z. Zhaowei, Z. Jinli, and Z. Quanzhong: Fresenius Environ. Bull., 2017, vol. 26(6), pp. 4194–201.

    CAS  Google Scholar 

  7. H. Zhou, P. Ma, M. Zhou, Z. Lai, and M. Cheng: J. Energy Inst., 2019, vol. 92(5), pp. 1476–86.

    Article  CAS  Google Scholar 

  8. L. Tomas da Rocha, H. Kim, C. Lee, and S.M. Jung: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2068–78.

    Article  Google Scholar 

  9. L. Tian, W. Yang, Z. Chen, X. Wang, H. Yang, and H. Chen: J. Energy Inst., 2016, vol. 89, pp. 264–70.

    Article  CAS  Google Scholar 

  10. K. Zhang, S. Yang, S. Liu, J. Shangguan, W. Du, Z. Wang, and Z. Chang: ACS Omega., 2020, vol. 5, pp. 3047–54.

    Article  CAS  Google Scholar 

  11. Z. Ouyang, J. Zhu, Q. Lu, Y. Yao, and J. Liu: Fuel., 2014, vol. 120, pp. 116–21.

    Article  CAS  Google Scholar 

  12. M.S. Lee and S.C. Shim: ISIJ Int., 2004, vol. 44(3), pp. 470–5.

    Article  CAS  Google Scholar 

  13. J. Pan, D. Zhu, X. Zhou, and Y. Luo: 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 2010.

  14. J. Qie, C. Zhang, X. Li, Y. Guo, H. Wang, and S. Wu: ISIJ Int., 2017, vol. 57(12), pp. 2115–23.

    Article  CAS  Google Scholar 

  15. C.D. Bontzolis, M.K. Petraki, and D.N. Spartinos: J. Chem. Technol. Biotechnol., 2019, vol. 94, pp. 3227–35.

    Article  CAS  Google Scholar 

  16. L. Pang, Y. Shao, W. Zhong, and H. Liu: Fuel, 2020, vol. 264 (116795).

  17. “Iron Ores—Method for Determination of Acid Soluble Iron (II) Content,” JIS M 8213, 1995.

  18. L. Zhang, Z. Li, W. He, J. Li, X. Qi, J. Zhu, L. Zhao, and X. Zhang: Fuel., 2018, vol. 222, pp. 350–61.

    Article  CAS  Google Scholar 

  19. W. Lv, X. Fan, X. Min, M. Gan, X. Chen, and Z. Ji: ISIJ Int., 2018, vol. 58(2), pp. 236–43.

    Article  CAS  Google Scholar 

  20. J.M. Qie, C.X. Zhang, F.Q. Shangguan, X.P. Li, and J.C. Zhou: Trans. Ind. Inst. Met., 2020, vol. 73, pp. 35–45.

    Article  CAS  Google Scholar 

  21. S. Cho, L. Tomas da Rocha, B.J. Chung, and S.M. Jung: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2676–86.

    Article  Google Scholar 

  22. D.F. Gonzalez, I.R. Bustinza, J. Mochon, C.G. Gasca, and L.F. Verdeja: Min. Process. Extract. Metall. Rev., 2017, vol. 38(4), pp. 254–64.

    Article  Google Scholar 

  23. A.E. Newkirk: 137th Meeting American Chemical Society, Division of Analytical Chemistry, Symposium Thermal Methods of Analysis, OH, 1960.

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Mo Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 18, 2021; accepted September 26, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S., Tomas Da Rocha, L., Chung, BJ. et al. Formation of NO and SO2 in the Sintering Process of Iron Ores. Metall Mater Trans B 53, 84–95 (2022). https://doi.org/10.1007/s11663-021-02341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02341-0

Navigation