Skip to main content
Log in

Part I. The microstructural evolution in Ti-Al-Nb O+Bcc orthorhombic alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Phase transformations and the resulting microstructural evolution of near-Ti2AlNb and Ti-12Al-38Nb O+bcc orthorhombic alloys were investigated. For the near-Ti2AlNb alloys, the processing temperatures were below the bcc transus, while, for Ti-12Al-38Nb, the processing temperature was supertransus. Phase evolution studies showed that these alloys contain several constituent phases, namely, bcc, O, and α 2; when present, the latter was in small quantities compared to the other phases. The transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray investigations of samples that were solutionized and water quenched were used to estimate the phase fields, and a pseudobinary diagram based on Ti=50 at. pct was modified. The aging-transformation behavior was studied in detail. For solutionizing temperatures between 875 °C and the bcc transus, the phase composition and volume fraction of the near-Ti2AlNb alloys adjusted through relative size changes of the equiaxed B2, O, and α 2 grains. The aging behavior followed three distinct transformation modes, dependent on the solutionizing and aging temperatures. Widmanstatten formation was observed when a new phase evolved from a parent phase. Thus, Widmanstatten O phase precipitated within the B2 phase for supertransus fully B2 microstructures, as well as for substransus α 2+B2 microstructures. Similarly, Widmanstatten B2 phase can form from a fully O microstructure, a transformation that has not been observed before. In the case of equiaxed O+B2 solutionized and water-quenched microstructures, Widmanstatten O-phase formation occurred only below 875 °C. For the subtransus-solutionized and water-quenched microstructures, a second aging transformation mode, cellular precipitation, was dominant below 750 °C. This involved formation of coarse and lenticular O phase that grew into the prior B2 grains from the grain boundaries. A third transformation mode involved composition-invariant transformation, where the fully B2 supertransus-solutionized and water-quenched microstructure transformed to a fully O microstructure at 650 °C. This microstructure reprecipitated B2 phase out of the O phase with continued aging time. For Ti-12Al-38Nb, Widmanstatten O precipitation remained the only transformation mode. It is shown that subtransus processing offers flexibility in controlling microstructures through postprocessing heat treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Banerjee, A.K. Gogia, T.K. Nandy, and V.A. Joshi: Acta Metall, 1988 vol. 36 (4), pp. 871–82.

    Article  CAS  Google Scholar 

  2. B. Mozer, L.A. Bendersky, W.J. Boettinger, and R.G. Rowe: Scripta Metall., 1990, vol. 24, pp. 2363–68.

    Article  CAS  Google Scholar 

  3. D.B. Banerjee: Progr. Mater. Sci., 1997, vol. 42, pp. 135–58.

    Article  CAS  Google Scholar 

  4. C.J. Boehlert, B.S. Majumdar, S. Krishnamurthy, and D.B. Miracle: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 309–23.

    Article  CAS  Google Scholar 

  5. B.S. Majumdar, C.J. Boehlert, A.K. Rai, and D.B. Miracle: High Temperature Ordered Intermetallic Alloys—VI. Materials Research Society Symposia Proceedings, J. Horton, I. Baker, S. Hanada, R.D. Noebe, and D.S. Schwartz, eds., Materials Research Society, Pittsburgh, PA, 1995, vol. 364, pp. 1259–65.

    Google Scholar 

  6. R.G. Rowe and E.L. Hall: High Temperature Ordered Intermetallic Alloys—IV, Materials Research Society Symposia Proceedings, L.A. Johnson, D.P. Pope, and J.O. Stiegler, eds., Materials Research Society, Pittsburgh, PA, 1991, vol. 231, pp. 449–54.

    Google Scholar 

  7. R.G. Rowe: in Microstructure/Property Relationships in Titanium Aluminides and Alloys, Y.-W. Kim and R.R. Boyer, eds., TMS, Warrendale, PA, pp. 387–98.

  8. R.G. Rowe and M. Larsen: in Titanium 95, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The University Press, Cambridge, United Kingdom, 1996, vol. 1, pp. 364–71.

    Google Scholar 

  9. C.J. Boehlert: “The Phase Evolution, Creep, and Tensile Behavior of Two-Phase Orthorhombic Titanium Alloys,” WL-TR-97-4118, Air Force Research Laboratory Materials and Manufacturing Directorate, Dayton, OH, 1997.

    Google Scholar 

  10. R.G. Rowe, P.A. Siemers and M. Larsen: Advancements in Synthesis and Processing, SAMPE, Covina, CA, 1992, pp. M171-M182.

    Google Scholar 

  11. R.G. Rowe, D. Banerjee, K. Muraleedharan, M. Larsen, E.L. Hall, D.G. Konitzer, and A.P. Woodfield: in Titanium ’92 Science and Technology, F.H. Froes and I. Caplan, eds., TMS, Warrendale, PA, pp. 1259–66.

  12. K. Muraleedharan, A.K. Gogia, T.K. Nandy, D. Banerjee, and S. Lele: Metall. Trans. A, 1992, vol. 23A, pp. 401–15.

    CAS  Google Scholar 

  13. K.A. Muraleedharan, T.K. Nandy, D. Banerjee, and S. Lele: Metall. Trans. A, 1992, vol. 23A, pp. 417–31.

    CAS  Google Scholar 

  14. K. Muraleedharan, D. Banerjee, S. Banerjee, and S. Lele: Phil. Mag., 1995, vol. 71 (5), pp. 1011–36.

    CAS  Google Scholar 

  15. K. Muraleedharan, T.K. Nandy, and D. Banerjee: Intermetallics, 1995, vol. 3, pp. 187–99.

    Article  CAS  Google Scholar 

  16. A.K. Gogia, T.K. Nandy, K. Muraleedharan, and D. Banerjee: Mater. Sci. Eng., 1992, vol. A159, pp. 73–86.

    CAS  Google Scholar 

  17. C.G. Rhodes: AF TR No. WL-TR-97-4082, P.R. Smith, ed., Air Force Research Laboratory Materials and Manufacturing Directorate, Dayton, OH, 1997, pp. 83–100.

    Google Scholar 

  18. L.A. Bendersky, W.J. Boettinger, and A. Roytburd: Acta Metall. Mater, 1991, vol. 39, pp. 1059–69.

    Google Scholar 

  19. C.J. Boehlert, B.S. Majumdar, V. Seetharaman, D.B. Miracle, and R. Wheeler: in Structural Intermetallics, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1997, pp. 795–804.

    Google Scholar 

  20. R.G. Rowe and M.F.X. Gigliotti: Scripta Metall., 1990, vol. 24, pp. 1209–14.

    Article  CAS  Google Scholar 

  21. H.T. Kestner-Weykamp, C.W. Ward, T.F. Broderick, and M.J. Kaufman: Scripta Metall., 1989, vol. 23, pp. 1697–1702.

    Article  CAS  Google Scholar 

  22. C.G. Rhodes: Proc. 6th World Conf. on Titanium, Cannes, France, 1988, P. Lacombe, R. Tricot, and G. Beranger, eds., les editions de physique, Les Ulis, 1989, vol. 1 pp. 199–204.

    Google Scholar 

  23. T.G. Langdon: Metall. Trans. A, 1982, vol. 13A, pp. 689–701.

    Google Scholar 

  24. W.G. Burgers: Physica, 1934, vol. 1, p. 561.

    Article  CAS  Google Scholar 

  25. P.K. Sagar, D. Banerjee, K. Muraleedharan, and YVRK Prasad: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2593–2604.

    CAS  Google Scholar 

  26. K.N. Tu: Metall. Trans., 1972, vol. 3, pp. 2769–76.

    CAS  Google Scholar 

  27. P.G. Shewmon: Transformations in Metals, McGraw-Hill New York, NY, Book Company, 1969, pp. 267–74.

    Google Scholar 

  28. H. Hu and B.B. Rath: Metall. Trans., 1970, vol. 1, pp. 3181–84.

    Google Scholar 

  29. G.T. Higgins, S. Wiryolukito, and P. Nash: in Grain Growth in Polycrystalline Materials. G. Abbruzzese and P. Brozzo, eds., Trans Tech Publications, Aedermannsdorf, Switzerland, 1992.

    Google Scholar 

  30. R.W. Cahn: in Physical Metallurgy, R.W. Cahn and P. Haasen, eds., North-Holland, New York, NY, 1996, vol. 3, pp. 2399–2500.

    Google Scholar 

  31. P.G. Shewman: Diffusion in Solids, McGraw-Hill Book Co., New York, NY, 1963, pp. 61–94.

    Google Scholar 

  32. D.B. Miracle, C.G. Rhodes, and M.A. Foster: in Titanium ’95, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The University Press, Cambridge, United Kingdom, 1996, vol. 1, pp. 372–79.

    Google Scholar 

  33. C.G. Rhodes, J.A. Graves, P.R. Smith, and M.R. James: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, pp. 45–52.

  34. A. Szaruga, M. Saqib, R. Omlor, and H.A. Lipsitt: Scripta Metall., 1992, vol. 26, pp. 787–90.

    Article  CAS  Google Scholar 

  35. R.J. Van Thyne and H.D. Kessler: Trans. AIME, 1954, vol. 200, pp. 193–99.

    Google Scholar 

  36. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, Van Nostrand Reinhold Company Limited, Berkshire, United Kingdom, 1981, pp. 322–30.

    Google Scholar 

  37. J.C. Williams: in Titanium Science and Technology, R.I. Jaffee and H.M. Burte, eds., Plenum Press, New York, NY, 1973, pp. 1433–94.

    Google Scholar 

  38. A. Denquin and S. Naka: Acta Metall., 1996, vol. 44, pp. 353–65.

    CAS  Google Scholar 

  39. C.J. Boehlert and D.B. Miracle: Metall. Trans., 1999, vol. 30A, pp. 2349–67.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boehlert, C.J., Majumdar, B.S., Seetharaman, V. et al. Part I. The microstructural evolution in Ti-Al-Nb O+Bcc orthorhombic alloys. Metall Mater Trans A 30, 2305–2323 (1999). https://doi.org/10.1007/s11661-999-0240-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0240-4

Keywords

Navigation