Skip to main content
Log in

Spatial Variation of Thermokinetics and Associated Microstructural Evolution in Laser Surface Engineered IN718: Precursor to Additive Manufacturing

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The spatial variation of thermokinetic parameters has a significant influence on solidification and microstructural aspects such as grain orientation, types and dimensions of the microstructural features, and crystallographic defects. In laser-based additive manufacturing, these factors are mainly dependent on the process parameters and have a wide implication on the microstructural aspects and, in turn, on the mechanical properties. In view of this, the current study focuses on the spatial variation on thermokinetic parameters such as cooling rate, thermal gradient (G), and solidification velocity (R) within the melt pool formed during laser processing of IN718. The continuous-wave Nd-YAG laser was employed at a laser fluence of 14.85, 19.10, and \(23.34\text { J/mm}^2\) with varying power (700, 900, 1100 W) at a constant scanning speed of 100 mm/s. The finite element method-based multiphysics heat transfer model, coupled with the dynamic fluid flow, was developed to predict these parameters. The model was correlated with microstructural aspects such as melt pool dimensions, orientation of columnar grains, and secondary dendritic arm spacing. The cumulative diffusion length of Nb obtained via thermo-diffusion calculation during multiple heating/cooling cycles was enough to dissolve the fine intragranular plate-shaped \(\delta \) precipitates in the heat-affected zone.The spatial variation of the G/R ratio recognized the transition of columnar to equiaxed solidification grains which was associated with the G/R ratio lower than \(10 \text {K s/mm}^2\) in the top region (\(\sim 25 \mu \text {m}\)) of the melt pool. In addition, the coupled solid mechanics model predicted the evolution of thermal stresses during solidification of the melt pool under a high thermal gradient, which marked the generation of high dislocation density in the solidified melt pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Hosseini, V. Popovich: Additive Manufacturing, 2019. vol. 30, p. 100877.

    Article  CAS  Google Scholar 

  2. A. Lingenfelter: Superalloy, 1989. vol. 718, pp. 673–683.

    Article  Google Scholar 

  3. K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan, F. Rezai: Materials Science and Engineering: A, 2018. vol. 735, pp. 182–190.

    Article  CAS  Google Scholar 

  4. C. Pei, D. Shi, H. Yuan, H. Li: Materials Science and Engineering: A, 2019. vol. 759, pp. 278–287.

    Article  CAS  Google Scholar 

  5. M. D. Sangid, T. A. Book, D. Naragani, J. Rotella, P. Ravi, P. Kenesei, J.S. Park, H. Sharma, J. Almer, X. Xiao: Additive Manufacturing, 2018. vol. 22, pp. 479–496.

    Article  CAS  Google Scholar 

  6. T. Trosch, J. Strößner, R. Völkl, U. Glatzel: Materials letters, 2016. vol. 164, pp. 428–431.

    Article  CAS  Google Scholar 

  7. M. J. Donachie and S. J. Donachie: Superalloys: a technical guide. ASM Int. (2002)

  8. R. Carlson and J. Radavich, International Symposium on Superalloys 79–95 (1989)

  9. M. V. Pantawane, Y.H. Ho, S. S. Joshi, N. B. Dahotre: Scientific Reports, 2020. vol. 10(1), pp. 1–14.

    Article  Google Scholar 

  10. M. V. Pantawane, S. Dasari, S. A. Mantri, R. Banerjee, N. B. Dahotre: Materials Research Letters, 2020. vol. 8(10), pp. 383–389.

    Article  CAS  Google Scholar 

  11. M. V. Pantawane, W. B. Robertson, R. J. Khan, D. P. Fick, and N. B. Dahotre: J. Appl. Phys., vol. 126(12), p. 124901 (2019)

  12. G. Pottlacher, H. Hosaeus, E. Kaschnitz, A. Seifter: Scandinavian Journal of Metallurgy, 2002. vol. 31(3), pp. 161–168.

    Article  CAS  Google Scholar 

  13. H. Hosaeus, A. Seifter, E. Kaschnitz, and G. Pottlacher: High Temperatures High Pressures(UK), vol. 33(4), pp. 405–410 (2001)

  14. H. Wei, J. Mazumder, T. DebRoy: Scientific reports, 2015. vol. 5, p. 16446.

    Article  CAS  Google Scholar 

  15. M. V. Pantawane, Y.H. Ho, W. B. Robertson, R. J. Khan, D. P. Fick, N. B. Dahotre: ACS Biomaterials Science & Engineering, 2020. vol. 6(4), pp. 2415–2426.

    Article  CAS  Google Scholar 

  16. R. Ji, Q. Zheng, Y. Liu, S. To, W. S. Yip, Z. Yang, H. Jin, H. Wang, B. Cai, W. Cheng: The International Journal of Advanced Manufacturing Technology, 2019. vol. 105(5-6), pp. 1917–1931.

    Article  Google Scholar 

  17. E. R. Denlinger, M. Gouge, J. Irwin, P. Michaleris: Additive Manufacturing, 2017. vol. 16, pp. 73–80.

    Article  Google Scholar 

  18. M. J. Sohrabi, H. Mirzadeh: Metals and Materials International, 2020. vol. 26(3), pp. 326–332.

    Article  CAS  Google Scholar 

  19. Z. Liu, H. Qi: Acta Materialia, 2015. vol. 87, pp. 248–258.

    Article  CAS  Google Scholar 

  20. W. Kurz, R. Trivedi: Materials Science and Engineering: A, 1994. vol. 179, pp. 46–51.

    Article  Google Scholar 

  21. N. J. Harrison, I. Todd, K. Mumtaz: Acta Materialia, 2015. vol. 94, pp. 59–68.

    Article  CAS  Google Scholar 

  22. S. Kou: New Jersey, USA, pp. 431–446 (2003)

  23. J. A. Dantzig, and M. Rappaz: Solidification: Revised & Expanded. EPFL Press, (2016)

  24. J. P. Leonard, T. Renk, M. O. Thompson, M. Aziz: Metallurgical and Materials Transactions A, 2004. vol. 35(9), pp. 2803–2807.

    Article  CAS  Google Scholar 

  25. S. Ghosh, L. Ma, N. Ofori-Opoku, and J. E. Guyer: Model. Simul. Mater. Sci. Eng., vol. 25(6), p. 065002 (2017)

  26. P. Nie, O. Ojo, Z. Li: Acta Materialia, 2014. vol. 77, pp. 85–95.

    Article  CAS  Google Scholar 

  27. Y. M. Wang, T. Voisin, J. T. McKeown, J. Ye, N. P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T. T. Roehling, et al.: Nature materials, 2018. vol. 17(1), pp. 63–71.

    Article  CAS  Google Scholar 

  28. W. Chen, T. Voisin, Y. Zhang, J.B. Florien, C. M. Spadaccini, D. L. McDowell, T. Zhu, Y. M. Wang: Nature communications, 2019. vol. 10(1), pp. 1–12.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the infrastructure and support of Center for Agile & Adaptive and Additive Manufacturing (CAAAM) funded through State of Texas Appropriation #190405-105-805008-220 and Materials Research Facility (MRF) at the University of North Texas.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra B. Dahotre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 12, 2020, accepted February 26, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantawane, M.V., Sharma, S., Dasari, S. et al. Spatial Variation of Thermokinetics and Associated Microstructural Evolution in Laser Surface Engineered IN718: Precursor to Additive Manufacturing. Metall Mater Trans A 52, 2344–2360 (2021). https://doi.org/10.1007/s11661-021-06227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06227-3

Navigation