Skip to main content

Advertisement

Log in

Infrared Brazing of Ti50Ni50 Shape Memory Alloy and Inconel 600 Alloy with Two Ag-Cu-Ti Active Braze Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Infrared brazing of Ti50Ni50 SMA and Inconel 600 alloy using Cusil-ABA and Ticusil filler metals has been investigated. The joints were dominated by Ag-Cu eutectic with proeutectic Cu in the Cusil-ABA brazed joint and with proeutectic Ag in the Ticusil one. A continuous curved belt composed of a Ni3Ti layer and a (Cu x Ni1−x )2Ti layer formed in the brazed Ti50Ni50/Ticusil/Inconel 600 joint. On the Ti50Ni50 SMA side, an intermetallic layer of (Cu x Ni1−x )2Ti formed in all joints, with x values around 0.81 and 0.47. Layers of (Cu x Ni1−x )2Ti, Ni3Ti, and mixed Ni3Ti and Ni2Cr intermetallics were observed next to the Inconel 600 substrate in the brazed Ti50Ni50/Cusil-ABA/Inconel 600 joint. The maximum shear strengths of the joints using the Cusil-ABA filler metal and the Ticusil filler metal were 324 and 300 MPa, respectively. In the Cusil-ABA brazed joint, cracks with cleavage-dominated fracture propagated along the (Cu x Ni1−x )2Ti interfacial layer next to the Ti50Ni50 SMA substrate. In the Ticusil brazed joint, ductile dimple fracture occurred in the Ag-rich matrix near the Inconel 600 alloy substrate. The absence of a detrimental Ti-Fe-(Cu) layer on the Inconel 600 substrate side can effectively improve the shear strength of the joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Otsuka and C. M. Wayman: Shape Memory Materials, Cambridge University Press, London, 1998.

    Google Scholar 

  2. K. Otsuka and X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp.511–678.

    Article  Google Scholar 

  3. K. Krulevitch, A.P. Lee, P.B. Ramsey, J. C. Trevino, J. Hamilton and M. A. Northrup: J. Microelectron. Syst., 1996, vol. 5, p. 270.

    Article  Google Scholar 

  4. L. McD. Schetky: Trans. Mater. Res. Soc. Jpn., 1994, vol. 18B, pp. 1131–42.

    Google Scholar 

  5. R.K. Shiue, C.P. Chen and S.K. Wu: Metall. Mater. Trans. A, 2015, vol. 46, pp. 2364–71.

    Article  Google Scholar 

  6. W. F. Smith: Structure and Properties of Engineering Alloys, 2nd ed., McGraw-Hill Co. Ltd., New York, 1993, pp. 494–98.

    Google Scholar 

  7. J.H. Chen, G.Z. Wang, K. Nogi, M. Kamai, N. Sato and N. Iwamoto: J. Mater. Sci., 1993, vol. 28, pp. 2933–42.

    Article  Google Scholar 

  8. W.C. Lee: J. Mater. Sci. Lett., 1996, vol. 15, pp. 29–31.

    Article  Google Scholar 

  9. T. Zaharinie, F. Yusof, M. Fadzil, M. Hamdi, T. Ariga: Mater. Res. Innov., 2014, vol. 18(S6), pp. 68–72.

    Google Scholar 

  10. A. Laik, P. Mishra, K. Bhanumurthy, G.B. Kale, B.P. Kashyap: Acta Mater., 2013, vol. 61, pp. 126–38.

    Article  Google Scholar 

  11. M.F. Montemor, M.G.S. Ferreira, N.E. Hakiki and M. Da Cunha Belo: Corr. Sci., 2000, vol. 42, pp. 1635–50

    Article  Google Scholar 

  12. A.P. Xian and Z.Y. Si: J. Mater. Sci., 1993, vol. 25, pp. 4483–87.

    Article  Google Scholar 

  13. X. Yue, P. He, J.C. Feng, J.H. Zhang and F. Q. Zhu: Mater. Charact., 2008, vol. 59, pp. 1721–27.

    Article  Google Scholar 

  14. R.K. Shiue, S.K. Wu and S.Y. Chen: Acta Mater., 2003, vol. 51, pp. 1991–2004.

    Article  Google Scholar 

  15. R.H. Shiue and S.K. Wu: Intermetallics, 2006, vol. 14, pp. 630–38.

    Article  Google Scholar 

  16. R.K. Shiue, Y.H. Chen and S. K. Wu: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4454–60.

    Article  Google Scholar 

  17. M. Schwartz: Brazing: for the Engineering Technologist, Chapman & Hall, New York, 1995, pp. 109–111.

    Google Scholar 

  18. P. Siegmund, C. Guhl, E. Schmidt, A. Rossberg, M. Rettenmayr: J. Mater. Sci., 2016, vol. 51, pp. 3693–3700.

    Article  Google Scholar 

  19. A. Laik, A.A. Shirzadi, R. Tewari, A. Kumar, T. Jayakumar, G.K. Dey: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2212–25.

    Article  Google Scholar 

  20. Y. Liu, Z.R. Huang, X.J. Liu: Ceram. Int., 2009, vol. 35, pp. 3479–84.

    Article  Google Scholar 

  21. P. Villars, A. Prince and H. Okamoto: Handbook of Ternary Alloy Phase Diagrams, ASM International, Materials Park, 1995.

    Google Scholar 

  22. K.P. Gupta: Phase Diagrams of Ternary Nickel Alloys, Indian Institute of Metals, Calcutta, 1990.

    Google Scholar 

  23. T.Y. Yang, R.K. Shiue and S.K. Wu: Intermetallics, 2004, vol. 12, pp. 1285-1292.

    Article  Google Scholar 

  24. ASM Materials Handbook: Binary Phase Diagrams, ASM International, Materials Park, 1992, vol. 3, 9.2.155.

  25. T.B. Massalski: Binary Alloy Phase Diagrams, ASM International, Materials Park, 1992.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for this research provided by the Ministry of Science and Technology (MOST) and National Taiwan University (NTU), Taiwan, under Grant Nos. MOST 104-2221-E002-005 and NTU 105R891803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyi-Kaan Wu.

Additional information

Manuscript submitted February 26, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiue, RK., Wu, SK. & Yang, SH. Infrared Brazing of Ti50Ni50 Shape Memory Alloy and Inconel 600 Alloy with Two Ag-Cu-Ti Active Braze Alloys. Metall Mater Trans A 48, 735–744 (2017). https://doi.org/10.1007/s11661-016-3890-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3890-z

Keywords

Navigation