Skip to main content
Log in

Effect of a Transverse Magnetic Field on Solidification Structures in Unmodified and Sr-Modified Al-7wtpctSi Alloys During Directional Solidification

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of a transverse magnetic field on the microstructures in unmodified and Sr-modified Al-7wtpctSi alloys during directional solidification was investigated. Experimental results indicated that the magnetic field caused the channel and freckle macrosegregations during directional solidification. Comparison of the microstructures in unmodified and Sr-modified Al-7wtpctSi alloys showed that the Sr-addition enhanced the convection effects. Moreover, the EBSD analysis revealed that the magnetic field changed the alignment of the α-Al dendrite and modified the distribution of dendrite fragments in both unmodified and Sr-modified Al-7wtpctSi alloys. Indeed, the application of the magnetic field caused the 〈001〉-crystal direction of the α-Al dendrite to deflect from the solidification direction and induced the formation of dendrite fragments on one side of the sample. Further, the Seebeck signal (E S) at the liquid/solid interface was measured in situ during directional solidification of Al-7wtpct Si alloy and the results indicated that the value of the E S was of the order of 10 μV and decreased with the increase of the growth speed. The above results may be attributed to the thermoelectric magnetic convection and its effect on the distribution of the solute Si. It is proven that solute effects are primarily responsible for dendrite fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. E.L. Rooy, Metals Handbook, Vol. 15, ASM International, Materials Park, OH, (1988), pp. 743–70.

    Google Scholar 

  2. M.M. Makhlouf, S. Shankar, and Y.W. Riddle: AFS Transactions, Paper No. 05-088(02), April 2005.

  3. A. Pacz: Aluminum-Silicon Alloy US Patent Specification 1387900, 1921, www.freepatentsonline.com/1387900.pdf.

  4. J.A.E. Bell and W.C. Winegard: Nature, 1965, vol. 208, pp. 173–77.

    Article  Google Scholar 

  5. A. Hellawell: Prog. Mater. Sci., 1970, vol. 15, pp. 3–78.

    Article  Google Scholar 

  6. H. Sathyapal and N. Prabhu: J. Mater. Sci., 2008, vol. 43, pp. 3009–27.

    Article  Google Scholar 

  7. H.A. Chedzey and D.T.J. Hurle: Nature, 1966, vol. 210, pp. 933–34.

    Article  Google Scholar 

  8. B. Ganapathysubramanian and N. Zabaras: Int. J. Heat Mass Transf., 2005, vol. 48, pp. 4174–89.

    Article  Google Scholar 

  9. M. Motokawa, M. Hamai, T. Sato, I. Mogi, S. Awaji, K. Watanabe, N. Kitamura, and M. Makihara: J. Magn. Magn. Mater., 2001, vol. 226, pp. 2090–93.

    Article  Google Scholar 

  10. P. De Rango, M. Lees, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Germi, and M. Pernet: Nature, 1991, vol. 349, pp. 770–72.

    Article  Google Scholar 

  11. I. Kazuhiko and U. Manabu: ISIJ Int., 2010, vol. 50, pp. 1950–54.

    Article  Google Scholar 

  12. Y. Han, C.Y. Ban, S.J. Guo, X.T. Liu, Q.X. Ba, and J.Z. Cui. Mater. Lett., 2007, vol. 61, pp. 983–86.

    Article  Google Scholar 

  13. W.J. Bottinger, F.S. Biancaniello, and S.R. Coriell: Metall. Trans. A, 1981, vol. 12, pp. 321–27.

    Article  Google Scholar 

  14. S.N. Tewari, R. Shah, and H. Song: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1535–44.

    Article  Google Scholar 

  15. J.J. Shercliff: J. Fluid Mech., 1979, vol. 91, pp. 231–51.

    Article  Google Scholar 

  16. J. Wang, Y. Fautrelle, Z. M. Ren, H. Nguyen-Thi, G. Salloum Abou Jaoude, G. Reinhart, N. Mangelinck-Noel, X. Li, and I. Kaldre. Appl. Phys. Lett., 2014, vol. 104, pp. 1–4.

    Google Scholar 

  17. J. Wang, Y. Fautrelle, Z. M. Ren, X. Li, H. Nguyen-Thi, N. Mangelinck-Noel, G. Salloum Abou Jaoude, Y.B. Zhong, I. Kaldre, A. Bojarevics, and L. Buligins: Appl. Phys. Lett., 2012, vol. 101, pp. 1–4.

    Google Scholar 

  18. H. Yasuda, K. Inoue, Y. Minami, T. Nagira, M. Yoshiya, K. Uesugi, and K. Umetani. J. Iron. Steel Res. Int., 2012, vol. 19, pp. 34–39.

    Article  Google Scholar 

  19. M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, and J. Banhart: Acta Mater., 2012, vol. 60, pp. 3920–28.

    Article  Google Scholar 

  20. P. Lehmann, R. Moreau, D. Camel, and R. Bolcato: Acta Mater., 1998, vol. 46, pp. 4067–79.

    Article  Google Scholar 

  21. J.J. Favier, J.P. Garandet, A. Rouzaud, and D. Camel: J. Cryst. Growth, 1996, vol. 140, pp. 237–43.

    Article  Google Scholar 

  22. S. Sen, B.K. Dhindaw, P.A. Curreri, P. Peters, and W.F. Kaukler: J. Cryst. Growth, 1998, vol. 193, pp. 692–700.

    Article  Google Scholar 

  23. F. Baltaretu, J. Wang, S. Letout, Z. M. Ren, X. Li, O. Budenkova, and Y. Fautrelle: Magnetohydrodynamics, 2015, vol. 51, pp. 45–56.

    Google Scholar 

  24. A.M. Samuel, F.H. Samuel, C. VilleneuveI, H.W. Doty, and S. Valtierra: Int. J. Cast Met. Res., 2001, vol. 14, pp. 97–120.

    Google Scholar 

  25. P. Lehamann, R. Moreau, D. Camel, and R. Bolcato: J. Cryst. Growth, 1998, vol. 183, pp. 690–704.

    Article  Google Scholar 

  26. P. Srirangam, M.J. Kramer, and S. Shankar: Acta Mater., 2011, vol. 59, pp. 503–13.

    Article  Google Scholar 

  27. R.H. Mathiesen and L. Arnberg: Mater. Sci. Eng. A, 2005, vol. 413, pp. 283–87.

    Article  Google Scholar 

  28. R.H. Mathiesen, L. Arnberg, P. Bleuet, and A. Somogyi: Metall. Mater. Trans A, 2006, vol. 37, pp. 2515–24.

    Article  Google Scholar 

  29. D. Ruvalcaba, R.H. Mathiesen, D.G. Eskin, L. Arnberg, and L. Katgerman: Acta Mater., 2007, vol. 55, pp. 4287–92.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported partly by the European Space Agency through the Bl-inter 09_473220, National Natural Science Foundation of China (Nos. 51271109, U1560202, 51171106 and 51571137) and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Li.

Additional information

Manuscript submitted June 17, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Gagnoud, A., Fautrelle, Y. et al. Effect of a Transverse Magnetic Field on Solidification Structures in Unmodified and Sr-Modified Al-7wtpctSi Alloys During Directional Solidification. Metall Mater Trans A 47, 1198–1214 (2016). https://doi.org/10.1007/s11661-015-3287-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3287-4

Keywords

Navigation