Skip to main content
Log in

Effect of Heating Rate on the Austenite Formation in Low-Carbon High-Strength Steels Annealed in the Intercritical Region

  • Symposium: Austenite Formation and Decomposition IV
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Austenite formation during intercritical annealing was studied in a cold-rolled dual-phase (DP) steel based on a low-carbon DP780 composition processed in the mill. Two heating rates, 10 and 50 K/s, and a range of annealing temperatures from 1053 K to 1133 K (780 °C to 860 °C) were applied to study their effects on the progress of austenitization. The effect of these process parameters on the final microstructures and mechanical properties was also investigated using a fixed cooling rate of 10 K/s after corresponding annealing treatments. It was found that the heating rate affects the austenite formation not only during continuous heating, but also during isothermal holding, and the effect is more pronounced at lower annealing temperatures. Faster heating delays the recrystallization kinetics of the investigated steel. The rate of austenite formation and its distribution are strongly influenced by the extent of overlapping of the processes of recrystallization and austenitization. It appeared that the heating rate and temperature of intercritical annealing have a stronger effect on the final tensile strength (TS) of the DP steel than holding time. Both higher annealing temperatures and long holding times minimize the strength difference caused by a difference in heating rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G.R. Speich, V.A. Demarest, and R.L. Miller: Metall. Trans. A, 1981, vol. 12A, pp. 1419–28.

    Google Scholar 

  2. P. Wycliffe, G.R. Purdy, and J.D. Embury: Fundamentals of Dual Phase Steels, Proc. Symp. Heat Treatment Committee of AIME, Chicago, IL, TMS-AIME, Warrendale, PA, 1981, pp. 59–83.

  3. D. San Martin, T. De Cock, A. Gacia-Junceda, F.G. Caballero, C. Capdevila, and C. Garcia de Andres: Mater. Sci. Technol., 2008, vol. 24, pp. 266–72.

    Article  CAS  Google Scholar 

  4. J. Wu, P.J. Wray, M. Hua, C.I. Garcia, and A.J. DeArdo: Austenite Formation and Decomposition, MS&T, TMS, Warrendale, PA, 2003, pp. 291–309.

  5. D. Quidort and Y.J.M. Bréchet: ISIJ Int., 2002, vol. 42, pp. 1010–17.

    Article  CAS  Google Scholar 

  6. J. Huang, W.J. Poole, and M. Militzer: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3363–75.

    Article  CAS  Google Scholar 

  7. C.I. Garcia and A.J. DeArdo: Metall. Trans. A, 1981, vol. 12A, pp. 521–30.

    Google Scholar 

  8. M. Tokizane, N. Matsumura, K. Tsuzaki, T. Maki, and I. Tamura: Metall. Trans. A, 1982, vol. 13A, pp. 1379–38.

    Google Scholar 

  9. D.Z. Yang, E.L. Brown, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1985, vol. 16A, pp. 1385–92.

    CAS  Google Scholar 

  10. I.A. El-Sesy, H.J. Klaar, and A.H. Hussein: Steel Res., 1990, vol. 90 (3), pp. 131–35.

    Google Scholar 

  11. J. Beswick: Metall. Trans. A, 1984, vol. 1A, pp. 299–306.

    Google Scholar 

  12. T.A. Kop, J. Sietsma, and S. Van der Zwaag: J. Mater. Sci., 2001, vol. 36, pp. 519–26.

    Article  CAS  Google Scholar 

  13. S. Choi: Mater. Sci. Eng. A, 2003, vol. 363, pp. 72–80.

    Article  Google Scholar 

  14. S.J. Lee, M.T. Lusk, and Y.K. Lee: Acta Mater., 2007, vol. 55, pp. 875–82.

    Article  CAS  Google Scholar 

  15. D. San Martin, P.E.J. Rivera-Diaz-del-Castillo, and C. Garcia-de-Andres: Scripta Mater., 2008, vol. 58, pp. 926–29.

    Article  CAS  Google Scholar 

  16. S. Lee, K.D. Clarke, and C.J. Van Tyne: Metall. Mater. Trans. A, vol. 41A, pp. 2224–35.

  17. S.K. Jayaswal and S.P. Gupta: Metallkd., 1992, vol. 83, pp. 809–19.

    CAS  Google Scholar 

  18. V.I. Savran, Y.V. Leeuwen, D.N. Hanlon, C. Kwakernaak, W.G. Sloof, and J. Sietsma: Metall. Trans. A, 2007, vol. 38A, pp. 946–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank ArcelorMittal for the permission to publish this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Mohanty.

Additional information

Manuscript submitted November 22, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohanty, R.R., Girina, O.A. & Fonstein, N.M. Effect of Heating Rate on the Austenite Formation in Low-Carbon High-Strength Steels Annealed in the Intercritical Region. Metall Mater Trans A 42, 3680–3690 (2011). https://doi.org/10.1007/s11661-011-0753-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0753-5

Keywords

Navigation