Skip to main content
Log in

Kinetics of Reverse Transformation from Pearlite to Austenite in an Fe-0.6 Mass pct C Alloy and the Effects of Alloying Elements

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Substitutional alloying effects on reversion kinetics from pearlite structure at 1073 K (800 °C) in an Fe-0.6 mass pct C binary alloy and Fe-0.6C-1 or 2 mass pct M (M = Mn, Si, Cr) ternary alloys were studied. Reverse transformation in the Fe-0.6C binary alloy at 1073 K (800 °C) was finished after holding for approximately 5.5 seconds. The reversion kinetics was accelerated slightly by the addition of Mn but retarded by the addition of Si or Cr. The difference of acceleration effects by the addition of the 1 and 2 mass pct Mn is small, whereas the retardation effect becomes more significant by increasing the amount of addition of Si or Cr. It is clarified from the thermodynamic viewpoint of carbon diffusion that austenite can grow without partitioning of Mn or Si in the Mn- or Si-added alloys. On the one hand, austenite growth is controlled by the carbon diffusion, whereas the addition of them affects carbon activity gradient, resulting in changes in reversion kinetics. On the other hand, thermodynamic calculation implies that the long-range diffusion of Cr is necessary for austenite growth in the Cr-added alloys. It is proposed that austenite growth from pearlite in the Cr-added alloys is controlled by the diffusion of Cr along austenite/pearlite interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. ThermoCalc is a trademark of ThermoCalc Software, Stockholm, Sweden.

  2. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo, Japan.

  3. FEI is a trademark of FEI Company, Hillsboro, OR.

References

  1. R.A. Roberts and R.F. Mehl: Trans. AIME, 1943, vol. 31, pp. 613-50.

    Google Scholar 

  2. C.R. Brooks: Principles of the Austenitization of Steels, Elsevier Applied Science, London, UK, 1992, pp. 81-130.

    Google Scholar 

  3. R.R. Judd and H.W. Paxton: Trans. TMS-AIME, 1968, vol. 242, pp. 206-15.

    CAS  Google Scholar 

  4. G.R. Speich and A. Szirmae: Trans. TMS-AIME, 1969, vol. 245, pp. 1063-74.

    CAS  Google Scholar 

  5. M. Hillert, K. Nilsson, and L-E. Torndahl: J. Iron Steel Inst., 1971, vol. 209, pp. 49-66.

    CAS  Google Scholar 

  6. G. Miyamoto, H. Usuki, Z.-D. Li, and T. Furuhara: Acta Mater., 2010, vol. 58, pp. 4492-4502.

    Article  CAS  Google Scholar 

  7. Z.-D. Li, G. Miyamoto, Z.-G. Yang, and T. Furuhara: Scripta Mater., 2009, vol. 60, pp. 485-88.

    Article  CAS  Google Scholar 

  8. D.V. Shtansky, K. Nakai, and Y. Ohmori: Acta Mater., 1999, vol. 47, pp. 2619-32.

    Article  CAS  Google Scholar 

  9. A. Roósz, Z. Gácsi, and E.G. Fuchs: Acta Metall., 1983, vol. 31, 509-17.

    Article  Google Scholar 

  10. F.G. Caballero, C. Capdevila, and C. García de Andrés: Scripta. Mater., 2000, vol. 42, pp. 1159-65.

    Article  CAS  Google Scholar 

  11. K. Kuo: Isothermal Transformation of Austenite and Partitioning of Alloying Elements in Low Alloy Steels, A. Hultgren and K.V.A. Handlingar, eds., Ser 4 Bd. 4, 1953, p. 46.

  12. D.V. Shtansky and G. Inden: Acta Mater., 1997, vol. 45, pp. 2879-95.

    Article  CAS  Google Scholar 

  13. D.E. Coates: Metall. Trans., 1972, vol. 3, pp. 1203-12.

    Article  CAS  Google Scholar 

  14. D.E. Coates: Metall. Trans., 1973, vol. 4, pp. 1077-86.

    Article  CAS  Google Scholar 

  15. D.E. Coates: Metall. Trans., 1973, vol. 4, pp. 2313-25.

    Article  CAS  Google Scholar 

  16. A. Hultgren: Trans. AIME, 1947, vol. 39, pp. 915-1009.

    Google Scholar 

  17. M. Hillert: Internal Report, Swedish Institute Metal Research, 1953.

  18. A. Schneider and G. Inden: Continuum Scale Simulation of Engineering Materials Fundamentals-Microstructure-Process Applications, D. Raabe, L.-Q. Chen, F. Barlat, and F. Roters, eds., Wiley-VCH, Berlin, Germany, 2004, pp. 3–36.

  19. C. Zener: Trans. AIME, 1946, vol. 167, pp. 550-95.

    Google Scholar 

  20. J.J. Kramer, G.M. Pound, and R.F. Mehl: Acta Metall., 1958, vol. 6, p. 763.

    Article  CAS  Google Scholar 

  21. E.E. Underwood: Quantitative Microscopy, R.T. de Hoff and F.N. Rhines, eds., McGraw-Hill, New York, NY, 1968, pp. 77-199.

  22. J. Fridberg, L.E. Torndahl, and M. Hillert: Jernkonterets Ann., 1969, vol. 153, pp. 263-76.

    CAS  Google Scholar 

  23. H. Oikawa: Tech. Reports, 1982, vol. 47, no. 2, pp. 216-19.

    Google Scholar 

  24. M. Kumar, R. Sasikumar, and P.K. Nair: Acta Mater., 1998, vol. 46, pp. 6291-6303.

    Article  CAS  Google Scholar 

  25. A. Jacot and M. Rappaz: Acta Mater., 1997, vol. 45, pp. 575-85.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Mikio Ishikuro for his help on the ICP-AES experiments. Yang and Li also appreciate the financial support by Grant 51071089 from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao-Dong Li or Goro Miyamoto.

Additional information

Manuscript submitted July 20, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, ZD., Miyamoto, G., Yang, ZG. et al. Kinetics of Reverse Transformation from Pearlite to Austenite in an Fe-0.6 Mass pct C Alloy and the Effects of Alloying Elements. Metall Mater Trans A 42, 1586–1596 (2011). https://doi.org/10.1007/s11661-010-0560-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0560-4

Keywords

Navigation