Skip to main content
Log in

Evolution of Microstructure and Texture during Annealing of Aluminum AA1050 Cold Rolled to High and Ultrahigh Strains

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure and texture of commercial purity aluminum (AA1050) have been investigated after cold rolling to von Mises strains of 3.6 to 6.4 followed by recovery and recrystallization during annealing. The evolution of structural parameters of the deformed microstructure, such as boundary spacing and fraction of high-angle boundaries (HABs), did not reach saturation in the given strain range. Recovery was accompanied by structural coarsening and by a decrease in the fraction of HABs. The coarsening rate increased with increasing strain prior to annealing. Recrystallization nuclei were found to form both in deformation zones around coarse particles and in recovered lamellar structures. The process of recrystallization in the present material can thus be characterized as discontinuous recrystallization. In recrystallized conditions, the average grain size was related to the grain orientation: the mean size of grains having orientations of the rolling texture was smaller than the size of grains with other orientations. The orientation dependence of the recrystallized grain size was more pronounced in the samples rolled to ultrahigh strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. F.J. Humphreys, P.B. Prangnell, J.R. Bowen, A. Gholinia, and C. Harris: Phil. Trans. R. Soc. London A, 1999, vol. 357, pp. 1663–81.

    Article  CAS  ADS  Google Scholar 

  2. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu: JOM, 2006, vol. 58, pp. 33–39.

    Article  Google Scholar 

  3. Q. Liu, X. Huang, D.J. Lloyd, and N. Hansen: Acta Mater., 2002, vol. 50, pp. 3789–3802.

    Article  CAS  Google Scholar 

  4. Q. Xing, X. Huang, and N. Hansen: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1311–22.

    Article  CAS  ADS  Google Scholar 

  5. W.Q. Cao, A. Godfrey, N, Hansen, and Q. Liu: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 204–14.

  6. H. Jazaeri and F.J. Humphreys: Acta Mater., 2004, vol. 52, pp. 3239–50.

    Article  CAS  Google Scholar 

  7. A. Oscarsson, B. Hutchinson, B. Nicol, P.S. Bate, and H.-E. Ekström: Mater. Sci. Forum, 1994, vols. 157–162, pp. 1271–76.

    Article  Google Scholar 

  8. R.A. Vandermeer and N. Hansen: Acta Mater., 2008, vol. 56, pp. 5719–27.

    Article  CAS  Google Scholar 

  9. F.J. Humphreys: Acta Mater., 1997, vol. 45, pp. 4231–40.

    Article  CAS  Google Scholar 

  10. H. Jazaeri and F.J. Humphreys: Acta Mater., 2004, vol. 52, pp. 3251–62.

    Article  CAS  Google Scholar 

  11. P.B. Prangnell, J.S. Hayes, J.R. Bowen, P.J. Apps, and P.S. Bate: Acta Mater., 2004, vol. 52, pp. 3193–3206.

    Article  CAS  Google Scholar 

  12. L. Delannay, O.V. Mishin, D. Juul Jensen, and P. Van Houtte: Acta Mater., 2001, vol. 49, pp. 2441–51.

    Article  CAS  Google Scholar 

  13. G.I. Rosen, D. Juul Jensen, D.A. Hughes, and N. Hansen: Acta Metall. Mater., 1995, vol. 43, pp. 2563–79.

    Article  CAS  Google Scholar 

  14. O.V. Mishin, B. Bay, G. Winther, and D. Juul Jensen: Acta Mater., 2004, vol. 52, pp. 5761–70.

    Article  CAS  Google Scholar 

  15. P.J. Hurley and F.J. Humphreys: Acta Mater., 2003, vol. 51, pp. 1087–1102.

    Article  CAS  Google Scholar 

  16. O.V. Mishin, D. Juul Jensen, and N. Hansen: Mater. Sci. Eng. A 2003, vol. 342, pp. 320–28.

    Article  Google Scholar 

  17. O.V. Mishin, B. Bay, and D. Juul Jensen: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1653–62.

    Article  CAS  Google Scholar 

  18. F.J. Humphreys, P.S. Bate, and P.J. Hurley: J. Microsc., 2001, vol. 201, pp. 50–58.

    Article  CAS  MathSciNet  PubMed  Google Scholar 

  19. F.J. Humphreys: J. Mater. Sci. 2001, vol. 36, pp. 3833–54.

    Article  CAS  Google Scholar 

  20. O.V. Mishin, A. Godfrey, and L. Östensson: Metall. Mater. Trans A, 2006, vol. 37A, pp. 489–96.

    Article  CAS  Google Scholar 

  21. O. Daaland and E. Nes: Acta Mater., 1996, vol. 44, pp. 1413–35.

    Article  CAS  Google Scholar 

  22. Q. Zeng, X. Wen, and T. Zhai: Metall. Mater. Trans A, 2009, vol. 40A, pp. 2488–97.

    Article  CAS  ADS  Google Scholar 

  23. W.C. Liu, H. Yuan, and M.J. Huang: Metall. Mater. Trans A, 2009, vol. 40A, pp. 2794–97.

    Article  CAS  ADS  Google Scholar 

  24. O. Engler, P. Yang, and X.W. Kong: Acta Mater., 1996, vol. 44, pp. 3349–69.

    Article  CAS  Google Scholar 

  25. H.E. Vatne, O. Engler, and E. Nes: Mater. Sci. Technol., 1997, vol. 13, pp. 93–102.

    CAS  Google Scholar 

  26. K. Sjølstad, O. Engler, S. Tangen, K. Marthinsen, and E. Nes: Mater. Sci. Forum, 2002, vols. 396–402, pp. 463–68.

    Article  Google Scholar 

  27. F.J. Humphreys: Acta Metall., 1977, vol. 25, pp. 1323–44.

    Article  CAS  Google Scholar 

  28. D. Juul Jensen: Acta Metall. Mater., 1995, vol. 43, pp. 4117–29.

    Article  Google Scholar 

  29. O.V. Mishin and G. Gottstein: Mater. Sci. Eng. A, 1998, vol. 249, pp. 71–78.

    Article  Google Scholar 

  30. G.H. Zahid, Y. Huang, and P.B. Prangnell: Acta Mater., 2009, vol. 57, pp. 3509–21.

    Article  CAS  Google Scholar 

  31. M.Z. Quadir, O. Al-Buhamad, L. Bassman, and M. Ferry: Acta Mater., 2007, vol. 55, pp. 5438–48.

    Article  CAS  Google Scholar 

  32. M. Ferry and N. Burhan: Acta Mater., 2007, vol. 55, pp. 3479–91.

    Article  CAS  Google Scholar 

  33. W.Q. Cao, A. Godfrey, W. Liu, and Q. Liu: Mater. Sci. Eng A, 2003, vol. 361, pp. 9–14.

    Article  Google Scholar 

  34. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng A, 1997, vol. 238, pp. 219–74.

    Article  Google Scholar 

  35. O. Engler, H.E. Vatne, and E. Nes: Mater. Sci. Eng. A, 1996, vol. 205, pp. 187–98.

    Article  Google Scholar 

  36. J.A. Sæter and E. Nes: Mater. Sci. Forum, 1998, vols. 273–275, pp. 477–82.

    Article  Google Scholar 

  37. D. Juul Jensen and N. Hansen: Metall. Trans. A, 1986, vol. 17A, pp. 253–59.

    ADS  Google Scholar 

  38. C. Schäfer, J. Song, and G. Gottstein: Acta Mater., 2009, vol. 57, pp. 1026–34.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the Danish National Research Foundation and the National Natural Science Foundation of China (Grant No. 50911130230) for the Danish-Chinese Center for Nanometals, within which this work was performed. The authors are grateful to Professor A. Godfrey, Dr. J.R. Bowen, and Dr. H.-E. Ekström for useful discussions and comments on the manuscript. Dr. S. Van Boxel is acknowledged for providing the software for plotting ODFs from the EBSD data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O.V. Mishin.

Additional information

Manuscript submitted December 1, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishin, O., Juul Jensen, D. & Hansen, N. Evolution of Microstructure and Texture during Annealing of Aluminum AA1050 Cold Rolled to High and Ultrahigh Strains. Metall Mater Trans A 41, 2936–2948 (2010). https://doi.org/10.1007/s11661-010-0291-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0291-6

Keywords

Navigation