Skip to main content

Advertisement

Log in

Microstructure, Tensile, and Creep Behavior of Boron-Modified Ti-15Al-33Nb (at.%)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of boron on the microstructure, tensile, and creep behavior of a Ti-15Al-33Nb (at. pct) alloy was investigated. In addition to the normal constituent phases present in the unmodified alloy, the boron-modified alloys contained borides enriched in titanium and niobium. These borides made up to 9 pct of the volume and were present in the form of needles/laths. Boron additions of 5 at. pct resulted in significant strengthening and stiffening and reduced elongation-to-failure. Smaller boron additions of 0.5 at. pct did not as significantly impact the RT tensile properties, but reduced the 650 °C yield strength by 45 pct. Constant load, tensile-creep experiments were performed in the stress range of 150 to 400 MPa and the temperature range of 650 °C to 710 °C, in both air and vacuum environments. The addition of 5 at. pct boron significantly improved the creep resistance, whereas the addition of 0.5 at. pct boron degraded the creep resistance. In-situ tensile-creep experiments indicated that localized grain boundary cracking was prevalent at the prior-β grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. All compositions will be given in atomic percent unless otherwise stated.

  2. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. H.T. Kestner-Weykamp, C.W. Ward, T.F. Broderick, M.J. Kaufman: Scripta Metall., 1989, vol. 23, pp. 1697–1702

    Article  CAS  Google Scholar 

  2. C.J. Cowen, C.J. Boehlert: Phil. Mag. A, 2006, vol. 86, pp. 99–124

    Article  CAS  Google Scholar 

  3. C.J. Boehlert, B.S. Majumdar, V. Seetharaman, D.B. Miracle: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2305–23

    Article  CAS  Google Scholar 

  4. L.A. Bendersky, W.J. Boettinger, A. Roytburd: Acta Metall. Mater., 1991, vol. 39, pp. 1059–69

    Google Scholar 

  5. C.G. Rhodes, J.A. Graves, P.R. Smith, M.R. James: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 45–52

    Google Scholar 

  6. C.J. Cowen and C.J. Boehlert: Adv. Mater. Res., 2007, Part 1, vols. 15–17, pp. 976–81

  7. C.J. Boehlert, D.B. Miracle: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2349–67

    Article  CAS  Google Scholar 

  8. R.W. Hayes: Scripta Metall., 1996, vol. 34, pp. 1005–12

    Article  CAS  Google Scholar 

  9. R.G. Rowe, M. Larsen: in Titanium 1995, P.A. Blenkinsop, W.J. Evans, H.M. Flowers, eds., The University Press, Cambridge, United Kingdom, 1996, pp. 364–71

    Google Scholar 

  10. C.J. Boehlert, J.F. Bingert: J. Mater. Process. Technol., 2001, vol. 117, pp. 401–08

    Article  Google Scholar 

  11. S. Tamirisakandala, R.B. Bhat, J.S. Tiley, D.B. Miracle: Scripta Metall., 2005, vol. 53, pp. 1421–26

    Article  CAS  Google Scholar 

  12. S. Tamirisakandala, D.B. Miracle, R. Srinivasan, and J.S. Gunasekera: Adv. Mater. Processes, 2006, December, pp. 41–43

  13. S. Gorsse, D.B. Miracle: Acta Mater., 2006, vol. 51, pp. 2427–42

    Article  CAS  Google Scholar 

  14. C.J. Boehlert, C.J. Cowen, S. Tamirisakandala, D.J. McEldowney, D.B. Miracle: Scripta Metall., 2006, vol. 55, pp. 465–68

    Article  CAS  Google Scholar 

  15. F. Tang, S. Nakazawa, M. Hagiwara: Mater. Sci. Eng. A, 2001, vol. 315, pp. 147–52

    Article  Google Scholar 

  16. M. Hagiwara, S. Emura, A. Araoka: Mater. Sci. Forum, 2003, vols. 426–432, pp. 1715–20

    Article  Google Scholar 

  17. S.J. Yang, S. Emura, M. Hagiwara, S.W. Nam: Scripta Mater., 2003, vol. 49, pp. 897–902

    Article  CAS  Google Scholar 

  18. M. Hagiwara, S. Emura, A. Araoka, B.O. Kong, F. Tang: Metall. Mater. Int., 2003, vol. 9, pp. 265–72

    Article  CAS  Google Scholar 

  19. S. Emura, S.J. Yang, M. Hagiwara: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2971–79

    Article  CAS  Google Scholar 

  20. C.J. Cowen, C.J. Boehlert: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 26–34

    Article  CAS  Google Scholar 

  21. J.E. Hilliard: Metall. Progr., 1964, vol. 78, pp. 99–100

    Google Scholar 

  22. Standard Test Methods for Determining Average Grain Size, ASTM Designation E112-96e3, ASTM, West Conshohocken, PA

  23. G.A. Hartman, S.M. Russ: in Metal Matrix Composites: Testing, Analysis and Failure Modes, W.S. Johnson, ed., ASTM, Philadelphia, PA, 1989, p. 43

    Google Scholar 

  24. B.J. Kooi, Y.T. Pei, J.T.M. De Hosson: Acta Mater., 2003, vol. 51, pp. 831–45

    Article  CAS  Google Scholar 

  25. W. Lu, D. Zhang, X. Zhang, R. Wu, T. Sakata, H. Mori: J. Alloys Compd., 2001, vol. 327, pp. 240–47

    Article  CAS  Google Scholar 

  26. D.R. Trinkle: Scripta Mater., 2007, vol. 56, pp. 273–76

    Article  CAS  Google Scholar 

  27. R.W. Evans and B. Wilshire: in Creep of Metals and Alloys, The Institute of Metals, New York, NY, 1985, pp. 157–90

    Google Scholar 

  28. R.W. Hertzberg: in Deformation and Fracture Mechanics of Engineering Materials, 4th ed., John Wiley and Sons, New York, NY, 1996, pp. 157–211

    Google Scholar 

  29. C.S. Lee, G.W. Han, R.E. Smallman, D. Feng, J.K.L. Lai: Acta Mater., 1999, vol. 47, pp. 1823–30

    Article  CAS  Google Scholar 

  30. C.L. White, A. Choudhury: in High Temperature Ordered Intermetallic Alloys II, N.S. Stoloff, C.C. Koch, C.T. Liu, O. Izumi, eds., Materials Research Society, Boston, MA, 1987, pp. 427–41

    Google Scholar 

  31. C.T. Liu, C.L. White, J.A. Horton: Acta Metall., 1985, vol. 33, pp. 213–29

    Article  CAS  Google Scholar 

  32. E.M. Shulson, T.P. Weihs, I. Baker, H.J. Frost, J.A. Horton, Acta Metall., 1986, vol. 34, pp. 1395–99

    Article  Google Scholar 

  33. I. Baker, E.M. Shulson, J.R. Michael: Philos. Mag. B, 1988, vol. 57, pp. 379–85

    Article  CAS  Google Scholar 

  34. C.J. Boehlert: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1977–88

    Article  CAS  Google Scholar 

  35. C.J. Boehlert: Mater. Sci. Eng. A, 1999, vol. 267, pp. 82–98

    Article  Google Scholar 

  36. K.B. Panda, K.S. Ravi Chandran: Acta Mater., 2006, vol. 54, pp. 1641–57

    Article  CAS  Google Scholar 

  37. F. Garofalo: in Fundamentals of Creep and Creep-Rupture in Metals, Macmillan, New York, NY, 1965, pp. 127–202

    Google Scholar 

  38. T.K. Nandy, R.S. Mishra, A.K. Gogia, D. Banerjee: Scripta Metall., 1995, vol. 32, pp. 851–56

    Article  CAS  Google Scholar 

  39. T.K. Nandy, R.S. Mishra, D. Banerjee: Scripta Metall., 1993, vol. 28, pp. 569–74

    Article  CAS  Google Scholar 

  40. T.K. Nandy, D. Banerjee: in Structural Intermetallics, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, M. Yamaguchi, eds., TMS, Warrendale, PA, 1997, pp. 777–86

    Google Scholar 

  41. M. Hagiwara and S. Emura: Paper presented at the Workshop on Titanium Alloys Modified with Boron, Dayton, OH, Oct. 11–13, 2005

Download references

Acknowledgments

This work was partially supported by the National Science Foundation through Grant Nos. DMR-0533954 and DMR-030992 and by an American Society of Engineering Education (ASEE) Air Force Research Laboratory (AFRL) Summer Faculty Fellowship (Contract No. F49620-02-C-0015). The authors are grateful to Drs. Seshachacharyulu Tamirisakandala and Daniel Miracle for their helpful assistance and guidance and Gerald Wynick and Ward Votava for their technical assistance with the EMP analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.J. Boehlert.

Additional information

Manuscript submitted May 3, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowen, C., Boehlert, C. Microstructure, Tensile, and Creep Behavior of Boron-Modified Ti-15Al-33Nb (at.%). Metall Mater Trans A 39, 279–293 (2008). https://doi.org/10.1007/s11661-007-9392-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9392-2

Keywords

Navigation