Skip to main content
Log in

Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Creep strengthening of Al-modified austenitic stainless steels by MC carbides or Fe2Nb Laves phase was explored. Fe-20Cr-15Ni-(0–8)Al and Fe-15Cr-20Ni-5Al base alloys (at. pct) with small additions of Nb, Mo, W, Ti, V, C, and B were cast, thermally-processed, and aged. On exposure from 650 °C to 800 °C in air and in air with 10 pct water vapor, the alloys exhibited continuous protective Al2O3 scale formation at an Al level of only 5 at. pct (2.4 wt pct). Matrices of the Fe-20Cr-15Ni-5Al base alloys consisted of γ (fcc) + α (bcc) dual phase due to the strong α-Fe stabilizing effect of the Al addition and exhibited poor creep resistance. However, adjustment of composition to the Fe-15Cr-20Ni-5Al base resulted in alloys that were single-phase γ-Fe and still capable of alumina scale formation. Alloys that relied solely on Fe2Nb Laves phase precipitates for strengthening exhibited relatively low creep resistance, while alloys that also contained MC carbide precipitates exhibited creep resistance comparable to that of commercially available heat-resistant austenitic stainless steels. Phase equilibria studies indicated that NbC precipitates in combination with Fe2Nb were of limited benefit to creep resistance due to the solution limit of NbC within the γ-Fe matrix of the alloys studied. However, when combined with other MC-type strengtheners, such as V4C3 or TiC, higher levels of creep resistance were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Viswanathan, W. Bakker: J. Mater. Eng. Perf., 2001, vol. 10, pp. 81–95

    Article  CAS  Google Scholar 

  2. P.J. Maziasz, R.W. Swindeman, J.P. Shingledecker, K.L. More, B.A. Pint, E. Lara-Curzio, and N.D. Evans: Proc. 6th Int. Charles Parsons Turbine Conf., A. Strang, R.D. Conroy, W.M. Banks, M. Blackler, J. Leggett, G.M. McColvin, S. Simpson, M. Smith, F. Starr, and R. W. Vanstone, eds., The Institute of Materials, Minerals and Mining, Maney Publishing, London, 2003, pp. 1057–73

  3. T. Sourmail: Mater. Sci. Technol., 2001, vol. 17, pp. 1–14

    CAS  Google Scholar 

  4. M. Taneike, F. Abe, K. Sawada: Nature, 2003, vol. 424, pp. 294–96

    Article  CAS  Google Scholar 

  5. M.P. Brady, J.H. Zhu, C.T. Liu, P.F. Tortorelli, L.R. Walker, C.G. McKamey, J.L. Wright, C.A. Carmichael, D.J. Larson, M.K. Miller, W.D. Porter: Mater. High Temp., 1999, vol. 16, pp. 189–93

    Article  CAS  Google Scholar 

  6. M.P. Brady, C.T. Liu, J.H. Zhu, P.F. Tortorelli, L.R. Walker: Scripta Mater., 2005, vol. 52, pp. 815–19

    Article  CAS  Google Scholar 

  7. M. Takeyama, S. Morita, A. Yamauchi, M. Yamanaka, T. Matsuo: in Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA, 2001, pp. 333–44

    Google Scholar 

  8. Binary Alloy Phase Diagrams, T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker, eds., ASM INTERNATIONAL, Materials Park, OH, 1986

  9. Handbook of Ternary Alloy Phase Diagrams, P. Villars, A. Prince, and H. Okamoto, eds., ASM INTERNATIONAL, Materials Park, OH, 1995, pp. 6769–74

  10. High Temperature Corrosion, P. Kofstad, ed., Elsevier, London, 1988

  11. E.J. Opila: Mater. Sci. Forum, 2004, vols. 461–464, pp. 765–73

    Google Scholar 

  12. B.A. Pint, R. Peraldi, P.J. Maziasz: Mater. Sci. Forum, 2004, vols. 461–464, pp. 815–22

    Article  Google Scholar 

  13. V. Ramakrishnan, J.A. McGurty, N. Jayaraman: Oxid. Met., 1988, vol. 60, pp. 185–200

    Article  Google Scholar 

  14. D. Satyanarayana, G. Malakondaiah, D. Sarma: Mater. Sci. Eng. A, 2002, vol. 323, pp. 119–28

    Article  Google Scholar 

  15. T. Fujioka, M. Kinugasa, S. Iizumi, S. Teshima, and I. Shimizu: U.S. Patent 3,989,514, Nov. 2, 1976

  16. J.A. McGurty: U.S. Patent 4,086,085, Apr. 25, 1978

  17. J.C. Pivin et al.: Corr. Sci., 1980, vol. 20, pp. 351–73

    Article  CAS  Google Scholar 

  18. M.P. Brady, C.T. Liu, Y. Yamamoto, Z.P. Lu, and H. Meyer: Proc. Ann. Rev. Fossil ARM Program, the Office of Fossil Energy, National Energy Technology Laboratory, United States Department of Energy, Knoxville, TN, USA, 2005

  19. Y. Yamamoto, Z.P. Lu, M.P. Brady, C.T. Liu, and P.F. Tortorelli: Proc. Ann. Rev. Fossil ARM Program, the Office of Fossil Energy, National Energy Technology Laboratory, United States Department of Energy, Knoxville, TN, USA, 2006

  20. Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H.M. Meyer, E.A. Payzant: Science, 2007, vol. 316, pp. 433–36

    Article  CAS  Google Scholar 

  21. Quality and Properties of NF709 Austenitic Stainless Steel for Boiler Tubing Applications, Nippon Steel Corporation, Tokyo, Japan, 1996

  22. R.W.K. Honeycombe: Steels, Microstructure and Properties, Edward Arnold Ltd., London, 1981, pp. 6–10

    Google Scholar 

  23. L. Colombier, J. Hochmann: Stainless and Heat Resisting Steels, St. Martin’s Press, New York, NY, 1968

    Google Scholar 

  24. Handbook of Ternary Alloy Phase Diagrams, P. Villars, A. Prince, and H. Okamoto eds., ASM INTERNATIONAL, Materials Park, OH, 1995, pp. 8833–69

  25. P.J. Maziasz: J. Met., 1989, vol. 41, pp. 14–20

    CAS  Google Scholar 

  26. P.J. Maziasz, R.W. Swindeman: J. Eng. Gas Turbines and Power (Trans. ASME), 2003, vol. 125, pp. 310–15

    Article  CAS  Google Scholar 

  27. P.J. Maziasz, B.A. Pint, J.P. Shingledecker, K.L. More, N.D. Evans, E. Lara-Curzio: Proc. ASME Turbo Expo 2004, Volume 6: Microturbines and Small Turbomachinery; Structures and Dynamics; General; Structural Mechanics and Vibration; Unsteady Aerodynamics; Rotordynamics, ASME, New York, NY, 2004, pp. 131–43

    Google Scholar 

  28. R.W. Swindeman, P.J. Maziasz, E. Bolling, and J.F. King: Oak Ridge National Laboratory Report No. ORNL-6629/P1, Oak Ridge, TN, 1990

  29. R.W. Swindeman and P.J. Maziasz: Proc. 1st Int. Conf. on Heat-Resistant Materials, K. Natesan and D.J. Tillack, eds., ASM INTERNATIONAL, Materials Park, OH, 1991, pp. 251–59

Download references

Acknowledgments

This research was sponsored by the Office of Fossil Energy, United States Department of Energy, National Energy Technology Laboratory, under Contract No. DE-AC05-00OR22725 with UT–Battelle, LLC. Additional funding and collaboration with the United States DOE Distributed Energy program and the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, are also acknowledged. A portion of this research was conducted at the SHaRE User Facility, Oak Ridge National Laboratory, which is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, United States Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.P. Brady.

Additional information

Manuscript submitted March 29, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, Y., Brady, M., Lu, Z. et al. Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates. Metall Mater Trans A 38, 2737–2746 (2007). https://doi.org/10.1007/s11661-007-9319-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9319-y

Keywords

Navigation