Skip to main content
Log in

Coarsening behavior of an alpha-beta titanium alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The static-coarsening behavior of the alpha-beta titanium alloy, Ti-6Al-4V, was established via a series of heat treatments at typical forging-preheat and final-heat-treatment temperatures followed by quantitative metallography. For this purpose, samples of an ultra-fine-grain (UFG) size billet with a microstructure of equiaxed alpha in a beta matrix were heated at temperatures of 843 °C, 900 °C, 955 °C, and 982 °C for times between 0.25 and 144 hours followed by water quenching. The coarsening of the primary alpha particles was found to follow r 3-vs-time kinetics, typical of volume-diffusion-controlled behavior, at the three lower temperatures. At the highest temperature, the kinetics appeared to be fit equally well by an r 3 or r 4 dependence on time. The observations were interpreted in terms of the modified LSW theory considering the effect of volume fraction on kinetics and the fact that the phases are not terminal solid solutions. Prior models, which take into account the overall source/sink effects of all particles on each other, provided the best description of the observed dependence of coarsening on the volume fraction of primary alpha. In addition, the volume-diffusion kinetics derived for the UFG material were found to be capable of describing the coarsening behavior observed for industrial-scale billet of Ti-6Al-4V with a coarser starting equiaxed-alpha microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Martin, R.D. Doherty, and B. Cantor: Stability of Microstructure in Metallic Systems, Cambridge University Press, Cambridge, United Kingdom, 1997.

    Google Scholar 

  2. M. McLean: Met. Sci., 1978, vol. 12, pp. 113–22.

    Article  CAS  Google Scholar 

  3. G.W. Greenwood: Acta Metall., 1956, vol. 4, pp. 243–48.

    Article  CAS  Google Scholar 

  4. I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–51.

    Article  Google Scholar 

  5. C. Wagner: Z. Elektrochem., 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  6. R. Asimow: Acta Metall., 1963, vol. 11, pp. 72–73.

    Article  CAS  Google Scholar 

  7. S. Sarian and H.W. Weart: J. Appl. Phys., 1966, vol. 37, pp. 1675–81.

    Article  CAS  Google Scholar 

  8. A.J. Ardell: Acta Metall., 1972, vol. 20, pp. 61–71.

    Article  Google Scholar 

  9. A.D. Brailsford and P. Wynblatt: Acta Metall., 1979, vol. 27, pp. 489–97.

    Article  CAS  Google Scholar 

  10. P.W. Voorhees and M.E. Glicksman: Acta Metall., 1984, vol. 32, pp. 2001–11.

    Article  CAS  Google Scholar 

  11. P.W. Voorhees and M.E. Glicksman: Acta Metall., 1984, vol. 32, pp. 2013–30.

    Article  CAS  Google Scholar 

  12. A.J. Ardell: Scripta Metall. Mater., 1990, vol. 24, pp. 343–46.

    Article  CAS  Google Scholar 

  13. C.H. Kang and D.N. Yoon: Metall. Trans. A, 1981, vol. 12A, pp. 65–69.

    Google Scholar 

  14. S.S. Kang and D.N. Yoon: Metall. Trans. A, 1982, vol. 13A, pp. 1405–11.

    Google Scholar 

  15. S.C. Hardy and P.W. Voorhees: Metall. Trans. A, 1988, vol. 19A, pp. 2713–21.

    CAS  Google Scholar 

  16. A. Baldan: J. Mater. Sci., 2002, vol. 37, pp. 2379–405.

    Article  CAS  Google Scholar 

  17. Z. Fang and B.R. Patterson: Acta Metall. Mater., 1993, vol. 41, pp. 2017–24.

    Article  CAS  Google Scholar 

  18. A.N. Niemi and T.H. Courtney: J. Mater. Sci., 1981, vol. 16, pp. 226–36.

    Article  CAS  Google Scholar 

  19. H.A. Calderon, P.W. Voorhees, J.L. Murray, and G. Kostorz: Acta Metall. Mater., 1994, vol. 42, pp. 991–1000.

    Article  CAS  Google Scholar 

  20. S.L. Semiatin, S.L. Knisley, P.N. Fagin, F. Zhang, and D.R. Barker: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2377–86.

    CAS  Google Scholar 

  21. S.V. Zherebstov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, and S.L. Semiatin: Proc. Nano SPD2, 2004, M.J. Zehetbauer, and R.Z. Valiev, eds., Wiley-VCH, Weinheim, Germany, 2004, pp. 835–40.

    Google Scholar 

  22. G.A. Salishchev, S.V. Zherebtsov, O.R. Valiakhmetov, R.M. Galeyev, V.K. Berdin, and S.L. Semiatin: Ti-2003: Science and Technology, G. Luetjering, ed., Wiley-VCH Verlag GmbH, Weinheim, Germany, 2004, in press.

    Google Scholar 

  23. E.E. Underwood: Metals Handbook, volume 9, Metallography and Microstructures, 9th ed., ASM INTERNATIONAL, Materials Park, OH, 1985, pp. 123–34.

    Google Scholar 

  24. R.D. Doherty: in Physical Metallurgy, R.W. Cahn and P. Haasen, eds., North-Holland, Amsterdam, 1996, pp. 1363–1505.

    Google Scholar 

  25. S.L. Semiatin, J.C. Soper, and I.M. Sukonnik: Acta Metall. Mater., 1996, vol. 44, pp. 1979–86.

    CAS  Google Scholar 

  26. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, Oxford, United Kingdom, 1982, pp. 43–52.

    Google Scholar 

  27. S.L. Semiatin, T.M. Brown, T.A. Goff, P.N. Fagin, D.R. Barker, R.E. Turner, J.M. Murry, J.D. Miller, and F. Zhang: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3015–18.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semiatin, S.L., Kirby, B.C. & Salishchev, G.A. Coarsening behavior of an alpha-beta titanium alloy. Metall Mater Trans A 35, 2809–2819 (2004). https://doi.org/10.1007/s11661-004-0228-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0228-z

Keywords

Navigation