Skip to main content

Advertisement

Log in

The effect of lamellar morphology on tensile and high-cycle fatigue behavior of orthorhombic Ti-22Al-27Nb alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The room-temperature tensile and high-cycle fatigue (HCF) behavior of orthorhombic Ti-22Al-27Nb alloy with varying lamellar morphology was investigated. Varying lamellar morphology was produced by changing the cooling rate after annealing in the single B2 phase region. A slower cooling rate of 0.003 K/s, for example, resulted in several large packets or colonies of similarly aligned O-phase lamellae and a nearly continuous massive α 2 phase at the prior B2 grain boundaries, while a faster cooling rate of 0.1 K/s led to the refinement of colony sizes and the O-phase lamellae. The interface of O-phase lamellae and B2 phases was semicoherent. Water quenching produced a very fine tweed-like microstructure with a thin continuous O phase at the prior B2 grain boundaries. The 0.2 pct yield stress, tensile strength, and HCF strength increased with increasing cooling rate. For example, the tensile strength and HCF strength at 107 cycles of 0.003 and 0.1 K/s-cooled were 774 and 450 MPa, and 945 and 620 MPa, respectively. Since the fatigue ratio, which is the ratio of HCF strength at 107 cycles to tensile strength, did not show a constant value, but instead increased with increasing cooling rate, part of the fatigue improvement was the result of improved resistance to fatigue associated with the microstructural refinement of the lamellar morphology. Fatigue failure occurred by the subsurface initiation, and every initiation site was found to contain a flat facet. Concurrent observation of the fatigue initiation facet and the underlying microstructure revealed that the fatigue crack initiated in a shear mode across the colony, irrespective of colony size, indicating that the size of the initiation facet corresponded to that of the colony. Therefore, the colony size is likely a major controlling factor in determining the degree of fatigue improvement due to the microstructural refinement of lamellar morphology. For the water-quenched specimens, fatigue crack initiation appeared to be associated with shear cracking along the boundary between the continuous grain boundary O phase and the adjacent prior B2 grain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Koss, D. Banerjee, D.A. Lukasak, and A.K. Gogia: High Temperature Aluminides and Intermetallics, TMS, Warrendale, PA, 1990, pp. 175–96.

    Google Scholar 

  2. Y.-W. Kim: J. Met., 1989, vol. 41, pp. 24–30.

    CAS  Google Scholar 

  3. R.G. Rowe: Microstructure/Property Relationship in Titanium Aluminides and Alloys, TMS, Warrendale, PA, 1991, pp. 387–98.

    Google Scholar 

  4. R.G. Rowe: Titanium ’92—Science and Technology, TMS, Warrendale, PA, 1993, pp. 343–50.

    Google Scholar 

  5. C.J. Boehlert, B.S. Majumdar, V. Seetharaman, and D.B. Miracle: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2305–23.

    CAS  Google Scholar 

  6. C.J. Boehlert and D.B. Miracle: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2349–67.

    CAS  Google Scholar 

  7. J.W. Zhang, C.S. Lee, D.X. Zou, S.Q. Li, and J.K.L. Lai: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 559–64.

    Article  CAS  Google Scholar 

  8. Y. Mao, S.L. Li, J.W. Zhang, J.H. Peng, D.X. Zou, and Z.Y. Zhong: Intermetallics, 2000, vol. 8, pp. 659–62.

    Article  CAS  Google Scholar 

  9. J. Kumpfert and C. Leyens: Structural Intermetallics 1997, TMS, Warrendale, PA, 1997, pp. 895–04.

    Google Scholar 

  10. J. Kumpfert and W.A. Kaysser: Z. Metallkd., 2001, vol. 92, pp. 128–33.

    CAS  Google Scholar 

  11. A.K. Gogia, T.K. Nandy, D. Banerjee, T. Carisey, J.L. Strudel, and J.M. Franchet: Intermetallics, 1998, vol. 6, pp. 741–48.

    Article  CAS  Google Scholar 

  12. F. Tang and M. Hagiwara: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 633–43.

    CAS  Google Scholar 

  13. S. Emura, A. Araoka, and M. Hagiwara: Scripta Mater., 2003, vol. 48, pp. 629–34.

    Article  CAS  Google Scholar 

  14. S.J. Yang, S.W. Nam, and M. Hagiwara: J. Alloys Compounds, 2003, vol. 350, pp. 280–87.

    Article  CAS  Google Scholar 

  15. J.H. Peng, Y. Mao, S.Q. Li, and X.F. Sun: Mater. Sci. Eng., 2001, vol. A299, pp. 75–80.

    CAS  Google Scholar 

  16. G. Lutjering, J. Albrecht, and O.M. Ivasishin: TITANIUM ’95, The Institute of Materials, London, 1995, pp. 1187–94.

    Google Scholar 

  17. L.A. Bendersky, W.G. Bottinger, and A. Roytburt: Acta Metall. Mater., 1991, vol. 39, pp. 1959–69.

    Article  CAS  Google Scholar 

  18. F.A. Sadi and C. Servant: Mater. Sci. Eng., 2001, vol. A346, pp. 19–28.

    Google Scholar 

  19. J.W. Zhang, S.Q. Li, D.X. Zou, W.Q. Ma, and Z.Y. Zhong: Intermetallics, 2000, vol. 8, pp. 699–02.

    Article  CAS  Google Scholar 

  20. K. Ito, L.T. Zhang, V.K. Vasudevan, and M. Yamaguchi: Acta Mater., 2001, vol. 49, pp. 963–72.

    Article  CAS  Google Scholar 

  21. D. Eylon and C.M. Pierce: Metall. Trans. A, 1976, vol. 7A, pp. 111–21.

    CAS  Google Scholar 

  22. D. Eylon: J. Mater. Sci., 1979, vol. 14, pp. 1914–22.

    Article  CAS  Google Scholar 

  23. D. Eylon and J.A. Hall: Metal. Trans. A, 1977, vol. 8A, pp. 981–90.

    CAS  Google Scholar 

  24. J.C. Williams and G. Luetjering: TITANIUM ’80, Science and Technology, The Japan Institute of Metals, Sendai, 1980, pp. 671–81.

    Google Scholar 

  25. K.S. Ravichandran, E.S. Dwarakadasa, and D. Banerjee: Scripta Metall. Mater., 1991, vol. 25, pp. 2115–20.

    Article  CAS  Google Scholar 

  26. K.S. Ravichandran: Acta Metall. Mater., 1991, vol. 39 (3), pp. 401–10.

    Article  CAS  Google Scholar 

  27. M. Hagiwara, Y. Kaieda, Y. Kawabe, and S. Miura: Iron Steel Inst. Jpn. Int., 1991, vol. 31, pp. 922–30.

    CAS  Google Scholar 

  28. M. Hagiwara, S.J. Kim, and S. Emura: Scripta Mater., 1998, vol. 39 (9), pp. 1185–90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagiwara, M., Emura, S., Araoka, A. et al. The effect of lamellar morphology on tensile and high-cycle fatigue behavior of orthorhombic Ti-22Al-27Nb alloy. Metall Mater Trans A 35, 2161–2170 (2004). https://doi.org/10.1007/s11661-004-0164-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0164-y

Keywords

Navigation