Skip to main content
Log in

Behavior of oxide film at the interface between particles in sintered Al powders by pulse electric-current sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure of the bonding interfaces between particles in aluminum (Al) powder sintered specimens by the pulse electric-current sintering (PECS) process was observed, using conventional transmission electron microscopy (CTEM) and high-resolution transmission electron microscopy (HRTEM). The behavior of oxide film at the interface between Al particles and its effect on properties of the sintered specimens were investigated. The results showed there were two kinds of bonding interfaces in the sintered specimens, namely, the direct metal/metal bonding and the metal/oxide film layer/metal bonding interface. By increasing the fraction of the direct metal/metal bonding interfaces, the tensile strength of the sintered specimens increased, and the electrical resistivity decreased. By increasing the loading pressure at higher sintering temperatures or increasing the sintering temperature under loading pressure, the breakdown of oxide film was promoted. The broken oxide film debris was dispersed in aluminum metal near the bonding interfaces between particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Ohashi, T. Yoshioka, I. Nitta, H. Hasegawa, and S. Sugii: J. Jpn. Inst. Met., 1999, vol. 63, pp. 983–88.

    CAS  Google Scholar 

  2. H. Kim, M. Kawahara, and M. Tokita: J. Jpn. Soc. Powder Metall., 2000, vol. 47, pp. 887–91.

    CAS  Google Scholar 

  3. G. Xie, O. Ohashi, T. Yoshioka, M. Song, K. Mitsuishi, H. Yasuda, K. Furuya, and T. Noda: Mater. Trans., 2001, vol. 42, pp. 1846–49.

    Article  CAS  Google Scholar 

  4. T. Murakami, A. Kitahara, Y. Koga, M. Kawahara, H. Inui, and M. Yamaguchi: Mater. Sci. Eng., 1997, vols. A239–A240, pp. 672–79.

    Google Scholar 

  5. L.L. Ye, Z.G. Liu, K. Raviprasad, M.X. Quan, M. Umemoto, and Z.Q. Hu: Mater. Sci. Eng., 1998, vol. A241, pp. 290–93.

    CAS  Google Scholar 

  6. Z.G. Liu, M. Umemoto, S. Hirosawa, and H. Kanekiyo: J. Mater. Res., 1999, vol. 14, pp. 2540–47.

    CAS  Google Scholar 

  7. S.H. Risbud, J.R. Groza, and M.J. Kim: Phil. Mag., 1994, vol. B69, pp. 525–33.

    Google Scholar 

  8. M. Yoshimura, T. Ohji, M. Sando, and K. Niihara: J. Mater. Sci. Lett., 1998, vol. 17, pp. 1389–91.

    Article  CAS  Google Scholar 

  9. S.W. Wang, L.D. Chen, and T. Hirai: J. Mater. Res., 2000, vol. 15, pp. 982–87.

    CAS  Google Scholar 

  10. M. Omori, T. Kakita, A. Okubo, and T. Hirai: Mater. Sci. Forum, 1999, vols. 308–311, pp. 53–58.

    Google Scholar 

  11. M. Tokita: Mater. Sci. Forum, 1999, vols. 308–311, pp. 83–88.

    Article  Google Scholar 

  12. D.B. Lee, J.H. Park, Y.H. Park, and Y.J. Kim: Mater. Trans. JIM, 1997, vol. 38, pp. 306–11.

    CAS  Google Scholar 

  13. T. Takeuchi, E. Betouren, M. Tabuchi, H. Kageyama, Y. Kobayashi, A. Coats, F. Morrison, D.C. Sinclair, and A.R. West: J. Mater. Sci., 1999, vol. 34, pp. 917–24.

    Article  CAS  Google Scholar 

  14. F. Katsuki, T. Tomida, A. Takata, K. Yanagimoto, and S. Matsuda: Mater. Trans. JIM, 2000, vol. 41, pp. 624–27.

    CAS  Google Scholar 

  15. C.L. Ma, A. Kasama, Y. Tan, H. Tanaka, R. Tanaka, Y. Mishima, and S. Hanada: Mater. Trans. JIM, 2000, vol. 41, pp. 719–26.

    CAS  Google Scholar 

  16. M. Omori: Mater. Sci. Eng., 2000, vol. A287, pp. 183–88.

    CAS  Google Scholar 

  17. J.R. Groza, S.H. Risbud, and K. Yamazaki: J. Mater. Res., 1992, vol. 7, pp. 2643–45.

    CAS  Google Scholar 

  18. O. Ohashi: J. Jpn. Welding Soc., 2000, vol. 69, pp. 465–74.

    CAS  Google Scholar 

  19. M. Tokita: J. Soc. Powder Technol. Jpn., 1993, vol. 30, pp. 790–804.

    CAS  Google Scholar 

  20. O. Yanagisawa, H. Kuramoto, K. Matsugi, and T. Hatayama: Proc. NEDO Int. Symp. on Functionally Graded Materials, Tokyo, 1999, pp. 127–33.

  21. R.N. Lumley, T.B. Sercombe, and G.B. Schaffer: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 457–63.

    CAS  Google Scholar 

  22. R.F. Tylecote: The Solid Phase Welding of Metals, Edward Arnold Ltd., London, U.K., 1968, p. 44.

    Google Scholar 

  23. K. Nishimoto, K. Saida, and R. Tsuduki: J. Jpn. Inst. Met., 2001, vol. 65, pp. 747–55.

    CAS  Google Scholar 

  24. A.A. Shirzadi, H. Assadi, and E.R. Wallach: Surf. Interface Anal., 2001, vol. 31, pp. 609–18.

    Article  CAS  Google Scholar 

  25. T. Enjo, K. Ikeuchi, and H. Fujita: J. Jpn. Inst. Light Met., 1986, vol. 36, pp. 498–506.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, G., Ohashi, O., Song, M. et al. Behavior of oxide film at the interface between particles in sintered Al powders by pulse electric-current sintering. Metall Mater Trans A 34, 699–703 (2003). https://doi.org/10.1007/s11661-003-0104-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0104-2

Keywords

Navigation