Skip to main content
Log in

A comparison study of microstructure and mechanical properties of Ti-24Al-14Nb-3V-0.5Mo with and without Si

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A comparative study has been made of the room- and elevated-temperature properties, room-temperature fracture toughness, fatigue-crack propagation rates, and 650 °C creep properties of Ti-24Al-14Nb-3V-0.5Mo with and without 0.9 at. pct Si. Both alloys have microstructures consisting of the α 2, B2, and the orthorhombic O phase, with different proportions of the α 2 phase relative to the (O + B2) mixtures, depending on solution-treatment temperature. The alloy with a Si addition contains additional primary ζ-Ti5Si3 particles distributed in the (O + B2) matrix. Tests of mechanical properties showed that the incorporation of a small fraction (about 0.03 by volume) of the Ti5Si3 phase leads to greater room-temperature and elevated-temperature strengths, but lower room-temperature elongations and fracture toughness as compared with the base alloy. Alloys containing greater volume fractions of the α 2 phase exhibited better tensile ductility, and this was attributed to the concurrent stabilization of the B2 phase. Examination of tensile-tested and fatigued specimens indicates that the primary failure mode of the alloys, regardless of Si addition, was due to the brittleness of the α 2 phase; the silicide particles that debonded from the matrix also contribute to cracking in the monotonic loading mode. Up to a 20 pct improvement in creep-rupture life was observed in the Si-containing alloys, and this was interpreted in terms of the solute-strengthening effect of Si. While the incorporated Ti5Si3 phase has an unfavorable effect on ductility and room-temperature fracture toughness, the difference in fatigue-crack propagation rates between the alloys with and without Si is minimal. It is concluded that the controlling factor for the fatigue failure in orthorhombic alloys is related to the (α 2 + O + B2) microstructure, instead of the Ti5Si3 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Lipsitt: High Temperature Ordered Intermetallic Alloys, Materials Research Society Symposia Proceedings, C.C. Koch, C.T. Liu, and N.S. Stoloff, eds., Materials Research Society, Pittsburgh, PA, 1985, vol. 39, pp. 351–64.

    Google Scholar 

  2. S.M.L. Sastry and H.A. Lipsitt: Ti ’80 Science and Technology, H. Kimura and O. Izumi, eds., TMS-AIME, Warrendale, PA, 1980, pp. 1231–43.

    Google Scholar 

  3. N.S. Chowdhary, H.C. Graham, and J.W. Hinze: Proc. Symp. on Properties of High Temperature Alloys, Electrochemical Society, Princeton, NJ, 1977, pp. 668–80.

    Google Scholar 

  4. M.J. Blackburn and M.P. Smith: United States Air Force Technical Report No. AFWAL-TR-81-4046, Wright Aeronautical Laboratories, 1981.

  5. F.H. Froes, C. Suryanarayana, and D. Elieser: J. Mater. Sci., 1992, vol. 27, pp. 5113–40.

    Article  CAS  Google Scholar 

  6. R.G. Rowe: Adv. Mater. Processes, 1992, vol. 141, pp. 33–35.

    CAS  Google Scholar 

  7. J.M. Larsen, W.C. Revelos, and M.L. Gambone: Intermetallic Matrix Composites II, Materials Research Society Symposia Proceedings, D.B. Miracle, D.L. Anton, and J.A. Graves, eds., Materials Research Society, Pittsburgh, PA, 1992, vol. 273, pp. 3–16.

    Google Scholar 

  8. D. Banerjee, A.K. Gogia, T.K. Nandy, and V.A. Joshi: Acta Metall., 1988, vol. 36, pp. 871–82.

    Article  CAS  Google Scholar 

  9. T.K. Nandy, R.S. Mishra, and D. Banerjee: Scripta Metall., 1993, vol. 28, pp. 569–74.

    Article  CAS  Google Scholar 

  10. D. Banerjee: Phil. Mag. A, 1995, vol. 72 (6), pp. 1559–87.

    CAS  Google Scholar 

  11. R.G. Rowe, D.G. Konitzer, A.P. Woodfield, and J.C. Chesnutt: High-Temperature Ordered Intermetallic Alloys IV, Materials Research Society Symposia Proceedings, L.A. Johson, D.P. Pope, and J.O. Stiegler, eds., Materials Research Society, Pittsburgh, PA, 1991, vol. 213, pp. 703–08.

    Google Scholar 

  12. P.R. Smith, J.A. Graves, and C.G. Rhodes: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1267–83.

    CAS  Google Scholar 

  13. A.K. Gogia, T.K. Nandy, D. Banerjee, and K. Muraleedharan: Mater. Sci. Eng., 1992, vol. A159, pp. 73–86.

    CAS  Google Scholar 

  14. C.J. Boehlert, B.S. Majumdar, and D. Eylon: Key Eng. Mater., 1997, vols. 127–131, pp. 843–50.

    Article  Google Scholar 

  15. B.S. Majumdar, C.J. Boehlert, A.K. Rai, and D.B. Miracle: High Temperature Ordered Intermetallic Alloys—VI, Materials Research Society Symposia Proceedings, J. Horton, I. Baker, S. Hanada, R.D. Noebe, and D.S. Schwartz, eds., Materials Research Society, Pittsburgh, PA, 1995, vol. 364, pp. 1259–65.

    Google Scholar 

  16. C.J. Boehlert and D.B. Miracle: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2349–67.

    CAS  Google Scholar 

  17. A.K. Gogia, T.K. Nandy, D. Banerjee, T. Carisey, J.L. Strudel, and J.M. Franchet: Intermetallics, 1998, vol. 6, pp. 741–48.

    Article  CAS  Google Scholar 

  18. C. Leyens and H. Gedanitz: Scripta Metall., 1999, vol. 41, pp. 901–06.

    Article  CAS  Google Scholar 

  19. A.T.K. Assadi, H.M. Flower, and D.S.F. West: Met. Technol. 1979, Jan., pp. 16–23.

  20. N.E. Paton and M.W. Mahoney: Metall. Trans. A, 1976, vol. 7A, pp. 1685–94.

    CAS  Google Scholar 

  21. R. Rosenkranz, G. Frommeyer, and W. Smarsly: Mater. Sci. Eng., 1992, vol. A152, pp. 288–94.

    CAS  Google Scholar 

  22. R. Mitra and V.V. Rama Rao: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1665–75.

    Article  CAS  Google Scholar 

  23. M. Es-Souni, R. Wagner, and P.A. Beaven: Mater. Sci. Eng., 1992, vols. A153, pp. 444–50.

    CAS  Google Scholar 

  24. R. Wagner, M. Es-Souni, D. Chen, B. Dogan, J. Seager, and P.A. Beaven: High-Temperature Ordered Intermetallic Alloys IV, Materials Research Society Symposia Proceedings, L.A. Johson, D.P. Pope, and J.O. Stiegler, eds., Materials Research Society, Pittsburgh, PA, 1991, vol. 213, pp. 1007–12.

    Google Scholar 

  25. D.J. Arrell, H.M. Flower, and S. Kerry: Titanium ’92 Science and Technology, F.H. Froes and I. Caplan, eds., TMS-AIME, Warrendale, PA, 1993, pp. 1003–08.

    Google Scholar 

  26. S. Tsuyama, S. Mitao, and K.-N. Minakawa: Mater. Sci. Eng., 1992, vol. A153, pp. 451–56.

    CAS  Google Scholar 

  27. T. Noda, M. Okabe, S. Isobe, and M. Sayashi: Mater. Sci. Eng., 1995, vols. A192–A193, pp. 774–79.

    Google Scholar 

  28. K. Muraleedharan, A.K. Gogia, T.K. Nandy, D. Banerjee, and S.L. Lele: Metall. Trans. A, 1992, vol. 23A, pp. 401-1s.

  29. J.S. Wu, P.A. Beaven, and R. Wagner: Scripta Metall., 1990, vol. 24, pp. 207–12.

    Article  CAS  Google Scholar 

  30. C.J. Boehlert, B.S. Majumadar, S. Krishnamurthy, and D.B. Miracle: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 309–23.

    CAS  Google Scholar 

  31. D.M. Dimiduk, P.M. Hazzledine, T.A. Parthasarathy, S. Seshagiri, and M.G. Mendiratta: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 37–47.

    CAS  Google Scholar 

  32. C.J. Boehlert, Marc Zupan, D.M. Dimiduk, and K.J. Hemker: in Gamma Titanium Aluminides 1999, Y.-W. Kim, D.M. Dimiduk, and M.H. Loretto, eds., TMS, Warrendale, PA, 1999, pp. 669–77.

    Google Scholar 

  33. A.K. Gogia, D. Banerjee, and T.K. Nandy: Metall. Trans. A, 1990, vol. 21A, pp. 609–25.

    CAS  Google Scholar 

  34. D. Banerjee: in Intermetallic Compounds: Principles and Practice, J.H. Westbrook and R.L. Fleischer, eds., John Wiley & Sons Ltd., New York, NY, 1994, vol. 2, pp. 91–131.

    Google Scholar 

  35. D.A. Koss, D. Banerjee, D.A. Lukasak, and A.K. Gogia: in High Temperature Aluminides Intermetallics, S.H. Whang, C.T. Liu, D.P. Pope, and J.O. Stiegler, eds., TMS, Warrendale, PA, 1990, pp. 175–96.

    Google Scholar 

  36. S.A. Court, J.P.A. Löfvander, M.H. Loretto, and H.L. Fraser: Phil. Mag. A, 1990, vol. 61 (1), pp. 109–39.

    CAS  Google Scholar 

  37. T.K. Nandy, R.S. Mishra, A.K. Gogia, and D. Banerjee: Scripta Metall., 1995, vol. 32 (6), pp. 851–56.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, B., Yang, R., Cui, Y.Y. et al. A comparison study of microstructure and mechanical properties of Ti-24Al-14Nb-3V-0.5Mo with and without Si. Metall Mater Trans A 31, 2205–2217 (2000). https://doi.org/10.1007/s11661-000-0138-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0138-7

Keywords

Navigation