Skip to main content
Log in

Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quality index (WQI): a case of study in the Boumerzoug-El Khroub valley of Northeast Algeria

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

In this study, the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-El khroub valley has been processed simultaneously with Multivariate analysis, geostatistical modeling, WQI, and geochemical modeling. Cluster analysis identified three main water types based on the major ion contents, where mineralization increased from group 1 to group 3. These groups were confirmed by FA/PCA, which demonstrated that groundwater quality is influenced by geochemical processes (water–rock interaction) and human practice (irrigation). The exponential semivariogram model fitted best for all hydrochemical parameters values and WQI. Groundwater chemistry has a strong spatial structure for Mg, Na, Cl, and NO3, and a moderate spatial structure for EC, Ca, K, HCO3, and SO4. Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results. All water groups are supersaturated with respect to carbonate minerals, and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alberto WD, Del Pilar DM, Valeria AM, Fabiana PS, Cecilia HA, De Los Angeles BM (2001) Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquıa River Basin (Cordoba-Argentina). Water Res 35:2881–2894

    Google Scholar 

  • Aly AA, Al-Omran AM, Alharby MM (2014) The water quality index and hydrochemical characterization of groundwater resources in Hafar Albatin, Saudi Arabia. Arab J Geosci. https://doi.org/10.1007/s12517-014-1463-2

    Article  Google Scholar 

  • Amadi AN (2011) Assessing the effects of aladimma dumpsite on soil and groundwater using water quality index and factor analysis. Aust J Basic Appl Sci 5(11):763–770

    Google Scholar 

  • Amaliya NK, Kumar SP (2015) Study on water quality status for drinking and irrigation purposes from the pond, open well and bore well water samples of four taluks of kanyakumari district. Int J Multidiscip Res Dev 2:495–501

    Google Scholar 

  • Appelo CA, Postma D (1993) Geochemistry, groundwater and pollution. Balkema, Rotterdam

    Google Scholar 

  • Arslan H (2012) Spatial and temporal mapping of groundwater salinity using ordinary Kriging and indicator kriging: the case of Bafra Plain, Turkey. Agric Water Manag 113:57–63

    Google Scholar 

  • Ayers RS, Westcot DW (1994) Food, Agriculture Organization of the United Nations (FAO), water quality for agriculture, irrigation and drainage, Rome, Paper No. 29. Rev1, M-56. ISBN 92-5-102263-1

  • Belkhiri L, Boudoukha A, Mouni L, Baouz T (2010) Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater: a case study—Ain Azel plain (Algeria). Geoderma 159:390–398

    Google Scholar 

  • Belkhiri L, Boudoukha A, Mouni L, Baouz T (2011) Statistical categorization geochemical modeling of groundwater in Ain Azel plain (Algeria). J Afr Earth Sci 59:140–148

    Google Scholar 

  • Bodrud-Doza Md, Towfiqul Islam ARM, Ahmed F, Das S, Saha N, Safiur Rahman M (2016) Characterization of groundwater quality using water evaluationindices, multivariate statistics and geostatistics in central Bangladesh. Water Science 30:19–40

    Google Scholar 

  • Boularak M (2003) Etude hydrogéologique du bassin versant de Boumerzoug: vulnerabilite des eaux souterraines et impact de la pollution sur la région d’El Khroub. Mémoirede Magister. Département de géologie, Université des frères Mentouri Constantine 1, Algérie

  • Bouteraa O (2008) Gestion intégrée des ressources en eau dans le basin versant de Boumerzoug (Kebir-Rhumel): perspectives et développement durable. Mémoirede Magister, Département de géologie, Université Badji Mokhtar, Annaba, Algerie

  • Brown RM, Mc Cleiland NJ, Deiniger RA, Connor MFA (1972) Water quality index—crossing the physical barrier. In: Jenkis S (ed) Proceedings of international conference on water pollution research, Jerusalem, vol 6, pp 787–797

  • Cerling TE, Pederson BL, Damm KLV (1989) Sodium–calcium ion exchange in the weathering of shales: implications for global weathering budgets. Geology 17:552–554

    Google Scholar 

  • Chadha DK (1999) A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeol J 7:431–439

    Google Scholar 

  • Chauhan A, Singh S (2010) Evaluation of Ganga water for drinking purpose by water quality index at Rishikesh, Uttarakhand, India. Rep Opin 2(9):53–61

    Google Scholar 

  • Chen L, Feng Q (2013) Geostatistical analysis of temporal and spatial variations in groundwater levels and quality in the Minqin oasis, Northwest China. Environ Earth Sci. https://doi.org/10.1007/s12665-013-2220-7

    Article  Google Scholar 

  • Clark ID (2015) Groundwater geochemistry and isotopes. CRC Press, Boca Raton

    Google Scholar 

  • Coiffait PF, Villa JM (1977) Carte géologique de l’Algérie au 1/50000. Feuille N°74. El Aria: avec notice explicative. Publ. Serv. Carte géol. Algérie

  • Delhomme JP (1978) Kriging in the hydrosciences. Adv Water Res 1:251–266

    Google Scholar 

  • Demirel Z, Güler C (2006) Hydrogeochemical evolution of groundwater in a Mediterranean coastal aquifer, Mersin-Erdemli basin (Turkey). Environ Geol 49:477–487

    Google Scholar 

  • Desai B, Desai H (2012) Assessment of water quality index for the groundwater with respect to salt water intrusion at coastal region of Surat city, Gujarat, India. J Environ Res Dev 7(2):607–621

    Google Scholar 

  • Drever JI (1988) The geochemistry of natural waters, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Eaton AD, Clesceri LS, Rice EW, Greenberg AE (2005) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC

    Google Scholar 

  • Ella VB, Melvin SW, Kanwar RS (2001) Spatial analysis of NO3–N concentration in glacial till. Trans ASAE 44:317

    Google Scholar 

  • Enwright N, Hudak PF (2009) Spatial distribution of nitrate and related factors in the High Plains aquifer. Texas Environ Geol 58:1541–1548

    Google Scholar 

  • Fisher RS, Mulican WF (1997) Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan desert, Trans-Pecos, Rexas, USA. Hydrogeol J 10(4):455–474

    Google Scholar 

  • Foued B, Hénia D, Lazhar B, Nabil M, Nabil C (2017) Hydrogeochemistry and geothermometry of thermal springs from the Guelma region, Algeria. J Geol Soc India 90:226

    Google Scholar 

  • Gebrehiwot AB, Tadesse N, Jigar E (2011) Application of water quality index to assess suitablity of groundwater quality for drinking purposes in Hantebet watershed, Tigray, Northern Ethiopia. J Food Agric Sci 1(1):22–30

    Google Scholar 

  • Goher ME, Hassan AM, Abdel-Moniem IA, Fahmy AH, El-sayed SM (2015) Evaluation of surface water quality and heavy metal indices of Ismailia Canal, Nile River, Egypt. Egypt J Aquat Res 40:225–233

    Google Scholar 

  • Güler C, Thyne GD (2004) Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian wells—Owens valley area, southeastern California, USA. J Hydrol 285:177–198

    Google Scholar 

  • Güler C, Thyne GD, Mc Cray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474

    Google Scholar 

  • Helena B, Pardo R, Vega M, Barrado E, Fernandez JM, Fernandez L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pissuerga River, Spain) by principal component analysis. Water Res 34:807–816

    Google Scholar 

  • Hennequi M (2010) Spatialisation des données de modélisation par Krigeage. Méthodologie [stat.ME].2010. < dumas-00520260>

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, Cambridge

    Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Measur 20:141–151

    Google Scholar 

  • Lahonder JC (1987) Les séries ultratelliennes d’Algérie Nord-Orientale et les formations environnantes dans leur cadre structural. Paul Sabatier, Toulouse, France

  • Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Total Environ 313:77–89

    Google Scholar 

  • Locsey KL, Cox ME (2003) Statistical and hydrochemical methods to compare basaltand basement rock-hosted groundwaters: Atheron Tablelands, northeastern Australia. Environ Geol 43(6):698–713

    Google Scholar 

  • Love D, Hallbauer D, Amos A, Hranova R (2004) Factor analysis as a tool in groundwater quality management: two Southern African case studies. PhysChem Earth 29(15–18):1135–1143

    Google Scholar 

  • Marques Da Silva AM, Sacomani LB (2001) Using chemical and physical parameters to define the quality of pardo river water (Botucatu-SP-Brazil). Water Res 35(6):1609–1616

    Google Scholar 

  • Matheron G (1965)Les variables régionalisées et leur estimation. Une application de la théorie des fonctions aléatoires aux sciences de la nature. Masson, Paris

  • Mayo AL, Loucks MD (1995) Solute and isotopic geochemistry and groundwater flow in the Central Wasatch range, Utah. J Hydrol 172:31–59

    Google Scholar 

  • Meng SX, Maynard JB (2001) Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucatu aquifer in São Paulo state. Braz J Hydrol 250:78–97

    Google Scholar 

  • Mohamed I, Othman F, Ibrahim AIN, Alaa-Eldin ME, Yunus RM (2015) Assessment of water quality parameters using multivariate analysis for Klang River basin, Malaysia. Environ Monit Assess 187:4182

    Google Scholar 

  • Montero JM, Fernández-Avilés G, Mateu J (2015) Spatial and spatio-temporal geostatistical modeling and kriging. Wiley, Chichester

    Google Scholar 

  • Mostafaei A (2014) Application of multivariate statistical methods and water quality index to evaluation of water quality in the Kashkan River. Environ Manag 53:865–881

    Google Scholar 

  • ONS (2017) Office National des Statistiques: Bulletin trimestriel des statistiques, Quatrième Trimestre, N° 84

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (ver2) A computer program for speciation, batch-reaction, one dimensional transport, and inverse geochemical calculations. US Geological Survey, the Water Resources Investment, Rept: 99-4259

  • Paul JM, Bij AS, George BM, Alex EC, Saranya R (2015) Studies on groundwater quality in and around Kothamangalam Taluk, Kerala, India. OSR-JMCE 12(2 Ver. IV):41–45

    Google Scholar 

  • Pereira HG, Renca S, Sataiva J (2003) A case study on geochemical anomaly identification through principal component analysis supplementary projection. Appl Geochem 18:37–44

    Google Scholar 

  • Piper AM (1944) A graphic procedure in geochemical interpretation of water analyses. Am Geophys Union Trans 25:914–923

    Google Scholar 

  • Raven T (1957) Carte géologique de l’Algérie au 1/50000. Feuille N°97. Le Khroub: avec notice explicative. Publ. Serv. Carte géol. Algérie

  • Riley JA, Steinhorst RK, Winter GV, Williams RE (1990) Statistical analysis of the hydrochemistry of groundwaters in Columbia River Basalts. J Hydrol 119:245–262

    Google Scholar 

  • Salman AS, Zaidi FK, Hussein MT (2014) Evaluation of groundwater quality in northern Saudi Arabia using multivariate analysis and stochastic statistics. Environ Earth Sci. https://doi.org/10.1007/s12665-014-3803-7

    Article  Google Scholar 

  • Sheikhy Narany T, Ramli MF, Aris AZ, Sulaiman WNA, Fakharian K (2014) Spatiotemporal variation of groundwater quality using integrated multivariate statistical and geostatistical approaches in Amol-Babol Plain, Iran. Environ Monit Assess 186:5797–5815

    Google Scholar 

  • Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Res 38:3980–3992

    Google Scholar 

  • Singh CK, Kumar A, Shashtri S, Kumar A, Kumar P, Mallick J (2017) Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. J Geochem Explor 175:59–71

    Google Scholar 

  • Tarki M, Dassi L, Hamed Y, Jedoui Y (2010) Geochemical and isotopic composition of groundwater in the Complex Terminal aquifer in southwestern Tunisia, with emphasis on the mixing by vertical leakage. Environ Earth Sci. https://doi.org/10.1007/s12665-010-0820-z

    Article  Google Scholar 

  • Teikeu WA, Meli’i JL, Nouck PN, Tabod CT, Nyam FEA, Aretouyap Z (2015) Assessment of groundwater quality in Yaoundé area, Cameroon, using geostatistical and statistical approaches. Environ Earth Sci. https://doi.org/10.1007/s12665-015-4779-7

    Article  Google Scholar 

  • Tiri A, Belkhiri L, Mouni L (2018) Evaluation of surface water quality for drinking purposes using fuzzy inference system. Groundw Sustain Dev 6:235–244

    Google Scholar 

  • USSL (1954) Diagnosis and improvement of saline and alkali soils, handbook, vol 60. USDA, Washington, p 147

    Google Scholar 

  • Varol M, Gökot B, Bekleyen A, Şen B (2012) Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena 92:11–21

    Google Scholar 

  • Venkatramanan S, Chung SY, Kim TH, Kim BW, Selvam S (2016) Geostatistical techniques to evaluate groundwater contamination and its sources in Miryang City, Korea. Environ Earth Sci. https://doi.org/10.1007/s12665-016-5813-0

    Article  Google Scholar 

  • Vila JM (1980) La chaine alpine d’Algérie orientale et des confins algérotunisiens Pierre et Marie Curie, Paris

  • Voute C (1967) Essais de synthèse de l’histoire géologique des environs d’Ain Fakroune, Ain Babouche, et des environs limitrophes. Publ. Serv. Carte géol. Algérie, Nlle Série, 2 t

  • Wackernagel H (1995) Ordinary Kriging. In: Wackernagel H (ed) Multivariate geostatistics. Springer, Berlin, pp 74–81

    Google Scholar 

  • Wang Y, Ma T, Luo Z (2001) Geostatistical and geochemical analysis of surface water leakage into groundwater on regional scale: a case study in the Liulin karst system, northwestern China. J Hydrol 246(1–4):223–234

    Google Scholar 

  • Wang W, Song X, Ma Y (2016) Identification of nitrate source using isotopic and geochemical data in the lower reaches of the Yellow River irrigation district (China). Environ Earth Sci. https://doi.org/10.1007/s12665-016-5721-3

    Article  Google Scholar 

  • WHO (2004) Guidelines for drinking water quality: training pack. WHO, Geneva

    Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foued Bouaicha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouteraa, O., Mebarki, A., Bouaicha, F. et al. Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quality index (WQI): a case of study in the Boumerzoug-El Khroub valley of Northeast Algeria. Acta Geochim 38, 796–814 (2019). https://doi.org/10.1007/s11631-019-00329-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-019-00329-x

Keywords

Navigation