Skip to main content
Log in

Platinum-group element geochemistry of mafic rocks from the Dongchuan area, southwestern China

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Mafic intrusions and dykes are well preserved in the Yinmin and Lanniping districts, located within the western margin of the Yangtze Block, SW China. Although these mafic rocks from the two areas formed during different periods, they share similar ranges of PGE concentration. Most of the Yinmin gabbroic dykes contain relatively high PGE concentrations (PGEs = 13.9–87.0 ppb) and low S contents (0.003 %–0.020 %), higher than the maximum PGE concentrations of mafic magmas melting from the mantle. Two exceptional Yinmin samples are characterized by relatively low PGE (PGEs = 0.31–0.37 ppb) and high S (0.114 %–0.257 %) contents. In contrast, most samples from the Lanniping gabbroic intrusion have low PGE concentrations (PGEs = 0.12–1.02 ppb) and high S contents (0.130 %–0.360 %), except that the three samples exhibit relatively high PGE (PGEs = 16.3–34.8 ppb) and low S concentrations (0.014 %–0.070 %). All the Yinmin and Lanniping samples are characterized by the enrichment of PPGE relative to IPGE in the primitive-mantle normalized diagrams, and the high-PGE samples exhibit obvious Ru anomalies. This study suggests that during the ascent of the parental magma, removal of Os–Ir–Ru alloys and/or chromite/spinel leads to high Pd/Ir ratios and Ru anomalies for the Yinmin high-PGE samples and relatively lower Pd/Ir ratios and Ru anomalies for the Lanniping low-PGE samples. We propose that the magmas parental to the Yinmin gabbroic dykes are initially S-unsaturated, and subsequently, minor evolved magma reached sulfur saturation and led to sulfide segregation. Although the Lanniping parental magmas are originally not saturated in S, the high Cu/Pd ratios (3.8 × 104 to 3.2 × 106) for most of the Lanniping samples indicate the S-saturated state and sulfide segregation. A calculation shows that the PGE-poor magmas might have experienced 0.01 %–0.1 % sulfide segregation in the magma chamber. Therefore, our study provides a possible opportunity to discover PGE-enriched sulfide mineralization somewhere near or within the Lanniping mafic intrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amossé J, Dable P, Allibert M (2000) Thermochemical behaviour of Pt, Ir, Rh and Ru vs fO2 and fS2 in a basaltic melt. Implications for the differentiation and precipitation of these elements. Miner Petrol 68(1–3):29–62

    Google Scholar 

  • Amossé J, Allibert M, Fischer W, Piboule M (1990) Experimental study of the solubility of platinum and iridium in basic silicate melts—implications for the differentiation of platinum-group elements during magmatic processes. Chem Geol 81(1):45–53

    Article  Google Scholar 

  • Barnes SJ, Maier W (1999) The fractionation of Ni, Cu and the noble metals in silicate and sulphide liquids. Geol Assoc Can Short Course Notes 13:69–106

    Google Scholar 

  • Barnes SJ, Naldrett A, Gorton M (1985) The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem Geol 53(3):303–323

    Article  Google Scholar 

  • Barnes SJ, Boyd R, Korneliussen A, Nilsson L, Often M, Pedersen R, Robins B (1988) The use of mantle normalization and metal ratios in discriminating between the effects of partial melting, crystal fractionation and sulphide segregation on platinum-group elements, gold, nickel and copper: examples from Norway Geo-platinum, vol 87. Springer, Berlin, pp 113–143

    Google Scholar 

  • Barnes SJ, Couture J, Sawyer E, Bouchaib C (1993) Nickel-copper occurrences in the Belleterre-Angliers Belt of the Pontiac Subprovince and the use of Cu-Pd ratios in interpreting platinum-group element distributions. Econ Geol 88(6):1402–1418

    Article  Google Scholar 

  • Bezmen N, Brügmann GY, Naldrett A (1991) Mechanism of concentration of platinum-group elements: partitioning between silicate and sulfide melts. Int Geol Rev 33(8):784–792

    Article  Google Scholar 

  • Bezmen N, Asif M, Brügmann G, Romanenko I, Naldrett A (1994) Distribution of Pd, Rh, Ru, Jr, Os, and Au between sulfide and silicate metals. Geochim Cosmochim Acta 58(4):1251–1260

    Article  Google Scholar 

  • Capobianco CJ, Drake MJ (1990) Partitioning of ruthenium, rhodium, and palladium between spinel and silicate melt and implications for platinum group element fractionation trends. Geochim Cosmochim Acta 54(3):869–874

    Article  Google Scholar 

  • Capobianco CJ, Hervig RL, Drake MJ (1994) Experiments on crystal/liquid partitioning of Ru, Rh and Pd for magnetite and hematite solid solutions crystallized from silicate melt. Chem Geol 113(1):23–43

    Article  Google Scholar 

  • Chen G (1998) Geologic eatures of the gabbro type Cu deposit in Dongchuan and their ore-prospecting significance. Geol Yunnan 01:78–83

    Google Scholar 

  • Crocket JH (1990) Noble metals in seafloor hydrothermal mineralization from the Juan de Fuca and mid-Atlantic ridges: a fractionation of gold from platinum metals in hydrothermal fluids. Can Miner 28:639–648

    Google Scholar 

  • Crocket J, Fleet M (1997) Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basalt melt: the significance of nickel content. Geochim Cosmochim Acta 61(19):4139–4149

    Article  Google Scholar 

  • Ely JC, Neal CR (2003) Using platinum-group elements to investigate the origin of the Ontong Java Plateau, SW Pacific. Chem Geol 196(1):235–257

    Article  Google Scholar 

  • Fleet M, Crocket J, Stone W (1996) Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt. Geochim Cosmochim Acta 60(13):2397–2412

    Article  Google Scholar 

  • Fonseca RO, Campbell IH, O’Neill HSC, Allen CM (2009) Solubility of Pt in sulphide mattes: implications for the genesis of PGE-rich horizons in layered intrusions. Geochim Cosmochim Acta 73(19):5764–5777

    Article  Google Scholar 

  • Francis RD (1990) Sulfide globules in mid-ocean ridge basalts (MORB), and effect of oxygen abundance in Fe-S-O liquids on the ability of those liquids to partitionmetals fromMORB and komatiitemagmas. Chem Geol 85:199–213

    Article  Google Scholar 

  • Fuchs WA, Rose AW (1974) The geochemical behavior of platinum and palladium in the weathering cycle in the Stillwater Complex, Montana. Econ Geol 69:332–346

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1997) Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: constraints on core formation in the Earth and Mars. Geochim Cosmochim Acta 61(9):1829–1846

    Article  Google Scholar 

  • Geng Y, Yang C, Du L, Wang X, Ren L, Zhou X (2007) Chronology and tectonic environment of the Tianbaoshan Formation: new evidence from zircon SHRIMP U-Pb age and geochemistry. Geol Rev 53(4):556–563

    Google Scholar 

  • Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC (2002) The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophys Geosyst 3:1–35

    Article  Google Scholar 

  • Gong L, Wang C (1981) On the origin of “Dongchuan type” copper deposit: Scientia Geologica Sinica, pp 203–211 (in Chinese)

  • Gong L, He Y, Chen T (1996) Proterozoic Dongchuan-type rift Cudeposit in Yunnan. Metallurgical Industry Publication, Beijing (in Chinese)

    Google Scholar 

  • Govindaraju K (1994) 1994 compilation of working values and sample description for 383 geostandards. Geostand Newslett 18(S1):1–158

    Article  Google Scholar 

  • Greentree MR, Li ZX (2008) The oldest known rocks in south-western China: SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group. J Asian Earth Sci 33(5):289–302

    Article  Google Scholar 

  • Greentree MR, Li ZX, Li XH, Wu H (2006) Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambr Res 151(1):79–100

    Article  Google Scholar 

  • Hamlyn PR, Keays RR, Cameron WE, Crawford AJ, Waldron HM (1985) Precious metals in magnesian low-Ti lavas: implications for metallogenesis and sulfur saturation in primary magmas. Geochim Cosmochim Acta 49(8):1797–1811

    Article  Google Scholar 

  • Hart SR, Zindler A (1986) In search of a bulk-Earth composition. Chem Geol 57:247–267

    Article  Google Scholar 

  • He D (2009) Petrological and geochemical characteristics of the Lala copper deposit in Sichuan Province. Unpublished Ph.D. thesis, The Gradute School of the Chinese Academy of Sciences, China, p 103

  • Hoatson DM, Keays RR (1989) Formation of platiniferous sulfide horizons by crystal fractionation and magma mixing in the Munni layered intrusion, West Pilbara Block, Western Australia. Econ Geol 84(7):1775–1804

    Article  Google Scholar 

  • Hou L (2013) Proterozoic Fe-Cu-Au-REE metallogenic system of “Dongchuan” Group in central Yunnan procince-A case study on the Ynachang deposit. Ph.D. Dissertation, China University of Geosciences

  • Hou L, Ding J, Deng J, Peng HJ (2015) Geology, geochronology, and geochemistry of the Yinachang Fe–Cu–Au–REE deposit of the Kangdian region of SW China: evidence for a Paleo-Mesoproterozoic tectono-magmatic event and associated IOCG systems in the western Yangtze Block. J Asian Earth Sci 103:129–149

    Article  Google Scholar 

  • Hua RM (1990) The sedimentation-reworking genesis of Dongchuan-type stratiform copper deposits. Chin J Geochem 9:231–243

    Article  Google Scholar 

  • Keays RR (1995) The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos 34(1):1–18

    Article  Google Scholar 

  • Li CS, Naldrett AJ (1993) High chlorine alteration minerals and calcium-rich brines in fluid inclusions from the Strathcona deep copper zone, Sudbury, Ontario. Econ Geol 88:1780–1796

    Article  Google Scholar 

  • Li XJ, Hua RY, Li LJ, Fan CY, Duan GL, Qu YC (1953) Geology of the Dongchuan-type copper deposit in Yunnan. Acta Geol Sinica 33:76–84 (in Chinese)

    Google Scholar 

  • Li XH, Li ZX, Ge W, Zhou H, Li W, Liu Y, Wingate MTD (2003a) Neoproterozoic granitoids in South China: crustal melting above a mantleplume at ca. 825 Ma? Precambr Res 122:45–83

    Article  Google Scholar 

  • Li ZQ, Wang JZ, Liu JJ, Li CY, Du AD, Liu YP, Ye L (2003b) Re-Os dating of molydenite from Lala Fe-Oxide-Cu-Au-Mo-REE deposit, Southwest China: implications for ore genesis. Contrib Geol Miner Resour 18:39–42 (in Chinese with English abstract)

    Google Scholar 

  • Li ZX, Wartho JA, Occhipinti S, Zhang CL, Li XH, Wang J, Bao C (2007) Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia: new mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints. Precambr Res 159(1):79–94

    Article  Google Scholar 

  • Lightfoot PC, Keays RR (2005) Siderophile and chalcophile metal variations in flood basalts from the Siberian trap, Noril’sk region: implications for the origin of the Ni-Cu-PGE sulfide ores. Econ Geol 100(3):439–462

    Article  Google Scholar 

  • Liu YL, Fang WX, Pan HJ, Du YL, Yao F (2011) Geologic characteristics of gabbro-diorite rock mass of the Lanniping district of the Dongchuan copper deposits and their ore-prospecting significance. Miner Resour Geol 25(2):143–147 (in Chinese with English abstract)

    Google Scholar 

  • Liu WM, Liu JS, Liu WH, Yang LG, Zhou YG, Dong X (2012) Ore geochemical characteristics and genesis of Xikuangshan type Fe-Cu deposit in Lanniping-Baixila copper mine of Dongchuan. World Geol 31(2):281–289 (in Chinese with English abstract)

    Google Scholar 

  • Maier WD (2005) Platinum-group element (PGE) deposits and occurrences: mineralization styles, genetic concepts, and exploration criteria. J Afr Earth Sc 41(3):165–191

    Article  Google Scholar 

  • Malvin D, Drake M, Benjamin T, Duffy C, Hollander M, Rogers P (1986) Experimental partitioning studies of siderophile elements amongst lithophile phases: preliminary results using PIXE microprobe analysis. In: Paper presented at the Lunar and Planetary Science Conference

  • Mavrogenes JA, O’Neill HSC (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta 63:1173–1180

    Article  Google Scholar 

  • McCallum M, Loucks R, Carlson R, Cooley E, Doerge T (1976) Platinum metals associated with hydrothermal copper ores of the New Rambler Mine, Medicine Bow Mountains, Wyoming. Econ Geol 71(7):1429–1450

    Article  Google Scholar 

  • Meisel T, Moser J (2004) Reference materials for geochemical PGE analysis: new analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP-MS in 11 geological reference materials. Chem Geol 208(1):319–338

    Article  Google Scholar 

  • Meng HM, Chang HC, Hsu SC, Teng YS, Shu CA (1948) Geology of the Tungchuan district, northeastern Yunnan, vol 68. National Research Institute of Geology, Shanghai

    Google Scholar 

  • Mitchell RH, Keays RR (1981) Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites: implications for the nature and origin of precious metal-rich intergranular components in the upper mantle. Geochim Cosmochim Acta 45(12):2425–2442

    Article  Google Scholar 

  • Mou C, Lin S, Yu Q (2003) The U-Pb ages of the volcanic rock of the Tianbaoshan formation, Huili, Sichuan province. J Stratigr 27:216–219

    Google Scholar 

  • Naldrett AJ (2010) Secular variation of magmatic sulfide deposits and their source magmas. Econ Geol 105(3):669–688

    Article  Google Scholar 

  • Naldrett AJ, Duke JM (1980) Platinum metals magmatic sulfide ores. Science 208(4451):1417–1424

    Article  Google Scholar 

  • Naldrett AJ, Wilson AH (1990) Horizontal and vertical variations in noble-metal distribution in the Great Dyke of Zimbabwe: a model for the origin of the PGE mineralization by fractional segregation of sulfide. Chem Geol 88(3):279–300

    Article  Google Scholar 

  • Peach C, Mathez E, Keays R (1990) Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: implications for partial melting. Geochim Cosmochim Acta 54(12):3379–3389

    Article  Google Scholar 

  • Peach C, Mathez EA, Keays RR, Reeves S (1994) Experimentally determined sulfide melt-silicate melt partition coefficients for iridium and palladium. Chem Geol 117(1):361–377

    Article  Google Scholar 

  • Prichard H, Lord R (1994) Evidence for differential mobility of platinum-group elements in the secondary environment in Shetland ophiolite complex. Trans Inst Min Metall B 103:53–56

    Google Scholar 

  • Prichard HM, Sá JHS, Fisher PC (2001) Platinum-group mineral assemblages and chromite composition in the altered and deformed Bacuri complex, Amapa, northeastern Brazil. Can Miner 39(2):377–396

    Article  Google Scholar 

  • Puchtel IS, Humayun M (2001) Platinum group element fractionation in a komatiitic basalt lava lake. Geochim Cosmochim Acta 65(17):2979–2993

    Article  Google Scholar 

  • Qi L, Zhou MF (2008) Platinum-group elemental and Sr–Nd–Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China. Chem Geol 248(1):83–103

  • Qi L, Jing H, Gregoire DC (2000) Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51(3):507–513

    Article  Google Scholar 

  • Qi L, Zhou MF, Wang CY (2004) Determination of low concentrations of platinum group elements in geological samples by ID-ICP-MS. J Anal At Spectrom 19(10):1335–1339

    Article  Google Scholar 

  • Qi L, Gao J, Huang X, Hu J, Zhou M-F, Zhong H (2011) An improved digestion technique for determination of platinum group elements in geological samples. J Anal Atom Spectrom 26(9):1900–1904

    Article  Google Scholar 

  • Qian J, Shen Y (1990) The Dahongshan volcanogenic Fe-Cu deposit in Yunnan Province. Geological Publishing House, Beijing

    Google Scholar 

  • Qiu HN, Zhu BQ, Sun DZ (2002) Age significance interpreted from 40Ar/39Ar dating of quartz samples from the Dongchuan Copper Deposits, Yunnan, SW China, by crushing and heating. Geochem J. 36:475–491

    Article  Google Scholar 

  • Rajamani V, Naldrett AJ (1978) Partitioning of Fe Co, Ni, and Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits. Econ Geol 73(1):82–93

    Article  Google Scholar 

  • Ran CY (1983) On genetic model of Dongchuan type strata-bound copperdeposit. Scientia Sinica Ser B 26:983–993

    Google Scholar 

  • Righter K (2001) Rhenium and iridium partitioning in silicate and magmatic spinels: implications for planetary magmatism and mantles. In: Paper presented at the Lunar and Planetary Science Conference

  • Righter K, Downs RT (2001) The crystal structures of synthetic Re-and PGE-bearing magnesioferrite spinels: implications for impacts, accretion and the mantle. Geophys Res Lett 28:619–622

    Article  Google Scholar 

  • Righter K, Campbell A, Humayun M, Hervig R (2004) Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochim Cosmochim Acta 68(4):867–880

    Article  Google Scholar 

  • Rowell WF, Edgar AD (1986) Platinum-group element mineralization in a hydrothermal Cu-Ni sulfide occurrence, Rathbun Lake, northeastern Ontario. Econ Geol 81(5):1272–1277

    Article  Google Scholar 

  • Seabrook CL, Prichard HM, Fisher PC (2004) Platinum-group minerals in the Raglan Ni–Cu–(PGE) sulfide deposit, Cape Smith, Quebec, Canada. Can Miner 42(2):485–497

    Article  Google Scholar 

  • Seitz HM, Keays RR (1997) Platinum group element segregation and mineralization in a noritic ring complex formed from Proterozoic siliceous high magnesium basalt magmas in the Vestfold Hills, Antarctica. J Petrol 38(6):703–725

    Article  Google Scholar 

  • Stockman HW, Hlava PF (1984) Platinum-group minerals in alpine chromitites from southwestern Oregon. Econ Geol 79(3):491–508

    Article  Google Scholar 

  • Stone W, Crocket J, Fleet M (1990) Partitioning of palladium, iridium, platinum, and gold between sulfide liquid and basalt melt at 1200 C. Geochim Cosmochim Acta 54(8):2341–2344

    Article  Google Scholar 

  • Sun K, Shen Y, Liu G, Li Z, Pan X (1991a) Proterozoic iron-copper deposits in central Yunnan province. China University of Geoscience Press, Beijing, pp 145–177

    Google Scholar 

  • Sun SS, Wallace D, Hoatson D, Glikson A, Keays R (1991b) Use of geochemistry as a guide to platinum group element potential of mafic-ultramafic rocks: examples from the west Pilbara Block and Halls Creek Mobile Zone, Western Australia. Precambrian Res 50(1):1–35

    Article  Google Scholar 

  • Sun WH, Zhou MF, Gao JF, Yang YH, Zhao XF, Zhao JH (2009) Detrital zircon U-Pb geochronological and Lu–Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China. Precambrian Res 172(1):99–126

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Wendlandt RF (1982) Sulfide saturation of basalt and andesite melts at high pressures and temperatures. Am Mineral 67:877–885

    Google Scholar 

  • Wu MD, Wang JS, Song XL, Chen L, Dan Y (1990) Geology of Kunyang Group in Yunnan Province. Scientific Press of Yunnan Province, Kunming (in Chinese with English abstract)

    Google Scholar 

  • Ye L, Li CY, Liu JJ, Liu YP (2004) Ar-Ar isotope age of Yinachang copper deposit, Wuding, Yunnan Province, China and its implications. Acta Miner Sinica 24:411–414 (in Chinese with English abstract)

    Google Scholar 

  • Yin F, Sun Z, Zhang Z (2011) Mesoproterozoic stratigraphic-structure framework in Huili-Dongchuan area. Geological Review 57:770–778

    Google Scholar 

  • Zhang C, Gao L, Wu Z, Shi X, Yan Q, Li D (2007) SHRIMP U-Pb zircon age of tuff from the Kunyang Group in central Yunnan: evidence for Grenvillian orogeny in South China. Chin Sci Bull 52(11):1517–1525

    Article  Google Scholar 

  • Zhao XF, Zhou MF (2011) Fe–Cu deposits in the Kangdian region, SW China: a Proterozoic IOCG (iron-oxide–copper–gold) metallogenic province. Miner Deposita 46(7):731–747

    Article  Google Scholar 

  • Zhao XF, Zhou MF, Li JW, Sun M, Gao JF, Sun WH, Yang JH (2010) Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: implications for tectonic evolution of the Yangtze Block. Precambr Res 182(1):57–69

    Article  Google Scholar 

  • Zhao JH, Zhou MF, Yan DP, Zheng JP, Li JW (2011) Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny. Geology 39:299–302

    Article  Google Scholar 

  • Zhao XF, Zhou MF, Li JW, Qi L (2013) Late Paleoproterozoic sedimentary rock-hosted stratiform copper deposits in South China: their possible link to the supercontinent cycle. Miner Deposita 48(1):129–136

    Article  Google Scholar 

  • Zhou MF (1994) PGE distribution in 2.7-Ga layered komatiite flows from the Belingwe greenstone belt, Zimbabwe. Chem Geol 118(1):155–172

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the assistance of Prof. Liang Qi and Ms. Yan Huang in the trace element and PGE analyses. The constructive comments and suggestions of the reviewers are acknowledged. This study was supported by the National Natural Science Foundation of China (41425011 and 41303016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zhong, H., Zhu, W. et al. Platinum-group element geochemistry of mafic rocks from the Dongchuan area, southwestern China. Acta Geochim 36, 52–65 (2017). https://doi.org/10.1007/s11631-016-0120-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-016-0120-8

Keywords

Navigation