Skip to main content
Log in

Geochemistry of sedimentary rocks from Permian–Triassic boundary sections of Tethys Himalaya: implications for paleo-weathering, provenance, and tectonic setting

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The geochemical characteristics of two sections—the Permian–Triassic boundary (PTB) Guryul Ravine section, Kashmir Valley, Jammu and Kashmir, India; and the Attargoo section, Spiti Valley, Himachal Pradesh, India—have been studied in the context of provenance, paleo-weathering, and plate tectonic setting. These sections represent the siliciclastic sedimentary sequence from the Tethys Himalaya. The PTB siliciclastic sedimentary sequence in these regions primarily consists of sandstones and shales with variable thickness. Present studied sandstones and shales of both sections had chemical index of alteration values between 65 and 74; such values reveal low-to-moderate degree of chemical weathering. The chemical index of weathering in studied samples ranged from 71 to 94, suggesting a minor K-metasomatism effect on these samples. Plagioclase index of alteration in studied sections ranged from 68 to 92, indicating a moderate degree of weathering of plagioclase feldspars. The provenance discriminant function diagram suggests that the detritus involved in the formation of present studied siliciclastic sedimentary rocks fall in quartzose sedimentary and felsic igneous provenances. These sediments were deposited in a passive continental margin plate tectonic setting according to their location on a Si2O versus K2O/Na2O tectonic setting diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Algeo TJ, Hannigan R, Rowe H, Brookfield M, Baud A, Krystyn L, Ellwood BB (2007) Sequencing events across the Permian–Triassic boundary, Guryul Ravine (Kashmir India). Palaeogeogr Palaeoclimatol Palaeoecol 252:328–346

    Article  Google Scholar 

  • Benton MJ, Tverdokhlebov VP, Surkov MV (2004) Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russian. Nature 432:97–100

    Article  Google Scholar 

  • Berner RA (2002) Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc Natl Acad Sci USA 99:4172–4177

    Article  Google Scholar 

  • Bhargava ON (1987) Stratigraphy, microfacies and paleoenvironment of the Lilang Group (Scythian-Dogger), Spiti Valley, Himachal Himalaya, India. J Palaeontol Soc India 25:91–107

    Google Scholar 

  • Bhargava ON (2008) An updated introduction to the Spiti geology. J Palaeontol Soc India 53:113–129

    Google Scholar 

  • Bhat GM, Bhat GD (1997) Stratigraphy and depositional environment of Late Permian Carbonates, Kashmir Himalaya. Geol Surv Mines Bur Srilanka Prof Paper 7:205–223

    Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Miner Petrol 92:181–193

    Article  Google Scholar 

  • Bhatt DK, Fuchs G, Prashara KC, Krysten L, Arora RK, Golebiowski R (1981) Conodonts of otoceras beds of Spiti. J Palaeontol Soc India 25:130–134

    Google Scholar 

  • Brookfield ME, Twitchett RJ, Goodings C (2003) Palaeoenvironments of the Permian-Triassic transition sections in Kashmir, India. Palaeogeogr Palaeoclimatol Palaeoecol 198:353–371

    Article  Google Scholar 

  • Brookfield ME, Shellnutt JG, Liang Qi R, Hannigan GM, Bhat PB Wignall (2010) Platinum element group variations at the Permo-Triassic boundary in Kashmir and British Columbia and their significance. Chem Geol 272:12–19

    Article  Google Scholar 

  • Brookfield ME, Algeo TJ, Hannigan R, Williams J, Bhat GM (2013) Shaken and stirred: seismites and tsunamites at the Permian–Triassic boundary, Guryul Ravine, Kashmir, India. Palaios 28:568–582

    Article  Google Scholar 

  • Cox R, Lowe DR, Cullers RL (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim Cosmochim Acta 59(14):2919–2940

    Article  Google Scholar 

  • Cullers RL (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, U.S.A: implications for provenance and metamorphic studies. Lithos 51:305–327

    Article  Google Scholar 

  • Dey S, Rai AK, Chaki A (2009) Palaeo-weathering, composition and tectonics of provenance of the Proterozoic Kaladgi Badami basin Karnataka southern India: evidence from sandstone petrography and geochemistry. J South Asian Earth Sci 34:703–715

    Article  Google Scholar 

  • Erwin DH (2005) Extinction: how life on earth nearly died 250 million years ago. Princeton University Press, Princeton

    Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleo-weathering conditions and provenance. Geology 23:921–924

    Article  Google Scholar 

  • Ganai JA, Shaik RA, Alam MM, Balaram V, Sathyanarayanan M (2014) The geochemistry of Permo-Carboniferous black shales from Spiti region, Himachal Pradesh, Tethys Himalaya: a record of Provenance and change in climate. Himal Geol 35(1):31–39

    Google Scholar 

  • Gardner LR (1992) Long-term isovolumetric leaching of aluminum from rocks during weathering: implications for the genesis of saprolite. Catena 19:521–537

    Article  Google Scholar 

  • Garzanti E, Angiolini L, Sciunnach D (1996) The mid-carboniferous to Lowermost Permian succession of Spiti po group and ganmachidam formation Tethys Himalaya, northern India: gondwana glaciation and rifting of neo-tethys. Geodin Acta 9:78–100

    Article  Google Scholar 

  • Garzanti E, Angiolini L, Brunton H, Sciunnach D, Balini M (1998) The bashkirian fenestella shales and the moscovian chaetetid shales of the Tethys Himalaya: south Tibet, Nepal and India. J Asian Earth Sci 16:119–141

    Article  Google Scholar 

  • Harnois L (1988) The CIW index: a news index of weathering. Sed Geol 55:319–322

    Article  Google Scholar 

  • Hayashi K, Fujisawa H, Holland H, Ohmoto H (1997) Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim Cosmochim Acta 61(19):4115–4137

    Article  Google Scholar 

  • Hongfu Y, Kexin Z, Jinnan T,Zunyi Y, Sunbao W (2001) The global stratotype section and point (GSSP) of the Permian–Triassic boundary. Episodes 24:102–114

    Google Scholar 

  • Huey RB, Ward PD (2005) Hypoxia, global warming, and terrestrial Late Permian extinctions. Science 308:398–401

    Article  Google Scholar 

  • Islam R, Ghosh SK, Sachan HK (2002) Geochemical characterization of the Neoproterozoic Nagthat siliciclastics, NW Kumaun Lesser Himalaya: implications for source rock assessment. J Geol Soc India 60:91–105

    Google Scholar 

  • Kapoor HM (1992) Permo-Triassic of the Indian subcontinent and its intercontinental correlation. In: Sweet WC, Yang Z, Dickins JM, Yin H (eds) Permo-triassic events in the eastern tethys. Cambridge University Press, Cambridge, pp 21–36

    Chapter  Google Scholar 

  • Kapoor HM (1996) The Guryul ravine section, candidate of the global stratotype and point (GSSP) of the Permia-Triassic boundary (PTB). In: Yin H (ed) The paleozoic-mesozoic boundary. Candidates of the global stratotype section and point of the Permian–Triassic boundary. China University of Geosciences Press, Wuhan, pp 99–110

    Google Scholar 

  • Maruoka T, Koeberl C, Hancox PJ, Reimold WU (2003) Sulfur geochemistry across a terrestrial Permian–Triassic boundary section in the Karoo Basin, South Africa. Earth Planet Sci Lett 206(1–2):101–117

    Article  Google Scholar 

  • McLennan SM (1993) Weathering and global denudation. J Geol 101:295–303

    Article  Google Scholar 

  • McLennan SM, Nance WB, Taylor SR (1980) Rare earth element- thorium correlation in sedimentary rocks and the composition of the continental crust. Geochim Cosmochim Acta 44:1833–1839

    Article  Google Scholar 

  • Mir AR, Bhat ZA, Alvi SH, Balaram V (2015) Geochemistry of black shales from Singhbhum mobile belt, Eastern India: implications for paleo-weathering and provenance. Himal Geol 36(2):126–133

    Google Scholar 

  • Myrow PM, Hughes NC, Paulsen T, Williams I, Parcha SK, Thompson KR, Bowring SA, Peng SC, Ahluwalia AD (2003) Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth Planet Sci Lett 212:433–444

    Article  Google Scholar 

  • Nakazawa K, Kapoor HM (1981) The Upper Permian and Lower Triassic Faunas of Kashmir. Palaeontol Indica New Ser 46:1–191

    Google Scholar 

  • Nakazawa K, Kapoor HM, Ishii K, Bando Y, Okimura Y, Tokuoka T (1975) The Upper Permian and the Lower Triasssic in Kashmir, India. Memoir Facul Sci Kyoto Univ Geol Mineral Ser 41:1–106

    Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motion inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1984) Prediction of some weathering trend of plutonic and volcanic rocks based on thermodynamic and kinetic consideration. Geochim Cosmochim Acta 48:1523–1534

    Article  Google Scholar 

  • Odigi MI, Amajor LC (2008) Petrology and geochemistry of sandstones in the southern Benue Trough of Nigeria: implications for provenance and tectonic setting. Chin J Geochem 27:384–394

    Article  Google Scholar 

  • Payne JL, Lehrmann DJ, Wei J, Orchard MJ, Schrag DP, Knoll AH (2004) Large perturbations of the carbon cycle during recovery from the End-Permian extinction. Science 305:506–509

    Article  Google Scholar 

  • Rashid SA (2005) The geochemistry of Mesoproterozoic clastic sedimentary rocks from the Rautgara Formation, Kumaun Lesser Himalaya: implications for provenance, mineralogical control and weathering. Curr Sci 88:1832–1836

    Google Scholar 

  • Roser BP, Korsch RJ (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2 O/Na2O ratio. J Geol 94:635–650

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major element data. Chem Geol 67:119–139

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1999) Geochemical characterization, evolution and source of a Mesozoic accretionary wedge: the Torlesse terrane, New Zealand. Geol Mag 136:493–512

    Article  Google Scholar 

  • Saito Y (1989) Modern storm deposits in the inner shelf and their recirrence intervals, Sendai Bay, northeast Japan. In: Taira A, Masuda F (eds) sedimentary facies in the active plate margin. Terra Science Publishing, Tokyo, pp 331–344

    Google Scholar 

  • Sciunnach D, Garzanti E (2012) Subsidence history of the Tethys Himalaya. Earth Sci Rev 111:179–198

    Article  Google Scholar 

  • Shen W, Lin Y (2010) Environmental conditions and events prior to the Permian–Triassic boundary at Meishan Section, China. J Earth Sci 21:151–153

    Article  Google Scholar 

  • Shen W, Sun Y, Lin Y, Liu D, Chai P (2011) Evidence for wildfire in the Meishan section and implications for Permian–Triassic events. Geochim Cosmochim Acta 75:1992–2006

    Article  Google Scholar 

  • Shukla AD, Bhandari N, Shukla PN (2002) Chemical signatures of the Permian–Triassic transitional environment in Spiti Valley, India. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America, Boulder, pp 445–453

    Chapter  Google Scholar 

  • Sing, J, Mahanti S, Singh K (2004) Geology and evaluation of hydrocarbon prospects of Tethyan sediments in Spiti Valley, Spiti and Zanskar, Himanchal Pradesh, 19th Himalaya-Karakoram-Tibet Workshop. Himalayan Journal of Sciences, Niseko pp 250

  • Singh T, Tiwari R, Vijaya S, Avtar R (1995) Stratigraphy and palynology of Carboniferous-Permian–Triassic succession in Spiti Valley, Tethys Himalaya, India. J Palaeontol Soc lndia 40:55–76

    Google Scholar 

  • Srikantia SV, Bhargava ON (1998) Geology of Himachal Pradesh: Geological Society of India, Bangalore p 416

  • Sugitani K, Fumiaki Y, Tsutomu N, Koshi Y, Masayo M, Koichi M, Kazuhiro S (2006) Geochemistry and sedimentary petrology of Archean clastic sedimentary rocks at Mt. Goldsworthy, Pilbara Craton, Western Australia: evidence for the early evolution of continental crust and hydrothermal alteration. Precambr Res 147:124–147

    Article  Google Scholar 

  • Sun L, Gui H, Chen S, Ma Y, He Z (2011) Geochemical characteristics and geological significance of the Neoproterozoic carbonates from northern Anhui Province, China. Chin J Geochem 30:40–50

    Article  Google Scholar 

  • Sun L, Gui H, Chen S (2013) Geochemistry of sandstones from the Neoproterozoic Jinshanzhai Formation in northern Anhui Province, China: provenance, weathering and tectonic setting. Chin J Geochem 32:095–103

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and its evolution. Blackwell, Oxford

    Google Scholar 

  • Wani H, Mondal MEA (2011) Evaluation of provenance, tectonic setting, and paleoredox conditions of the Mesoproterozoic-Neoproterozoic basins of the Bastar craton, Central Indian Shield: using petrography of sandstones and geochemistry of shales. Lithosphere 3:43–154

    Article  Google Scholar 

  • Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the Permian mass extinction. Science 272:1155–1158

    Article  Google Scholar 

  • Williams JC, Basu AR, Bargava ON, Ahluwalia AD, Hannigan RE (2012) Resolving original signatures from a sea of overprint- The geochemistry of the Gungri Shale (Upper Permian) Spiti Valley India. Chem Geol 324:59–72

    Article  Google Scholar 

  • Xu L, Lin Y (2014) Analysis of platinum-group elements in drill core samples from the Meishan Permian–Triassic boundary section, China. Chin J Geochem 33:365–373

    Article  Google Scholar 

  • Zhang Z, Yang X, Li S, Zhang Z (2010) Geochemical characteristics of the Xuanwei Formation in West Guizhou: significance of sedimentary environment and mineralization. Chin J Geochem 29:355–364

    Article  Google Scholar 

  • Zhiming L, Jiajun L, Ruizhong H, Mingqin H, Yuping L, Chaoyang L (2003) Tectonic setting and nature of the provenance of sedimentary rocks in Lanping Mesozoic-Cenozoic Basin: evidence from geochemistry of sandstones. Chin J Geochem 22:352–360

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the Director, NGRI, Hyderabad for permission to analyze the studied samples. First and third authors pay sincere gratitude to Prof. Shakil A. Romshoo, Head, Department of Earth Sciences, University of Kashmir for providing necessary facilities. Authors pay our sincere thanks to reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javid A. Ganai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, A.R., Balaram, V., Ganai, J.A. et al. Geochemistry of sedimentary rocks from Permian–Triassic boundary sections of Tethys Himalaya: implications for paleo-weathering, provenance, and tectonic setting. Acta Geochim 35, 428–436 (2016). https://doi.org/10.1007/s11631-016-0107-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-016-0107-5

Keywords

Navigation