Skip to main content
Log in

Functional analysis of FABP3 in the milk fat synthesis signaling pathway of dairy cow mammary epithelial cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Milk fat is the major energy component of milk, and regulation of its production relies on transcription factors sterol regulatory element-binding protein 1 (SREBP1) and peroxisome proliferator-activated receptor gamma (PPARγ). As one of the target genes of SREBP1 and PPARγ, fatty acid-binding protein 3(FABP3) is the main protein allowing for rapid diffusion and selective targeting of long-chain fatty acids toward specific organelles for metabolism. Whether FABP3 plays an important role in milk fat synthesis signaling pathway is largely unknown. In this study, we observed the effects of FABP3 overexpression and gene silencing in dairy cow mammary epithelial cells, as well as the effects of oleic acid, stearic acid, and palmitic acid on the expressions of FABP3 and lipid droplet formation, by using quantitative reverse transcriptase (qRT)-PCR, Western blotting, and fluorescent immunostaining techniques. FABP3 upregulated the expression of SREBP1 and PPARγ to increase lipid droplet accumulation. Oleic acid, stearic acid, and palmitic acid also increased lipid droplet accumulation by affecting expression of FABP3. These findings shed new insights for understanding the mechanism of FABP3 in regulating milk fat synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Bauman DE, Harvatine KJ, Lock AL (2011) Nutrigenomics, rumen-derived bioactive fatty acids, and the regulation of milk fat synthesis. Annu Rev Nutr 21(31):299–319

    Article  Google Scholar 

  • Bionaz M, Loor JJ (2008) ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J Nutr 138(6):1019–1024

    PubMed  CAS  Google Scholar 

  • Bionaz M, Loor JJ (2011) Gene networks driving bovine mammary protein synthesis during the lactation cycle. Bioinform Biol Insights 5:83–98

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89(3):331–340

    Article  PubMed  CAS  Google Scholar 

  • Calvo JH, Marcos S, Jurado JJ, Serrano M (2004) Association of the heart fatty acid-binding protein (FABP3) gene with milk traits in Manchega breed sheep. Anim Genet 35(4):347–349

    Article  PubMed  CAS  Google Scholar 

  • Hanhoff T, Lucke C, Spener F (2002) Insights into binding of fatty acids by fatty acid binding proteins. Mol Cell Biochem 239(1–2):45–54

    Article  PubMed  CAS  Google Scholar 

  • Haunerland NH, Spener F (2004) Fatty acid-binding proteins–insights from genetic manipulations. Prog Lipid Res 43:328–349

    Article  PubMed  CAS  Google Scholar 

  • Hong C, Tontonoz P (2008) Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev 18(5):461–467

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kadegowda AK, Bionaz M, Piperova LS, Erdman RA, Loor JJ (2009) Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. J Dairy Sci 92(9):4276–4289

    Article  PubMed  CAS  Google Scholar 

  • Kershaw EE, Schupp M, Guan HP, Gardner NP, Lazar MA, Flier JS (2007) PPARgamma regulates adipose triglyceride lipase in adipocytes in vitro and in vivo. Am J Physiol Endocrinol Metab 293(6):E1736–E1745

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu XF, Li M, Li QZ, Lu LM, Tong HL, Gao XJ (2012) Stat5a increases lactation of dairy cow mammary gland epithelial cells cultured in vitro. In Vitro Cell Dev Biol Anim 48(9):554–561

    Article  PubMed  CAS  Google Scholar 

  • Loor JJ, Ferlay A, Ollier A, Ueda K, Doreau M, Chilliard Y (2005) High-concentrate diets and polyunsaturated oils alter trans and conjugated isomers in bovine rumen, blood, and milk. J Dairy Sci 88:3986–3999

    Article  PubMed  CAS  Google Scholar 

  • Lu LM, Li QZ, Huang JG, Gao XJ (2012) Proteomic and functional analyses reveal MAPK1 regulates milk protein synthesis. Molecules 18(1):263–275

    Article  PubMed  Google Scholar 

  • Ma L, Corl BA (2012) Transcriptional regulation of lipid synthesis in bovine mammary epithelial cells by sterol regulatory element binding protein-1. J Dairy Sci 95(7):3743–3755

    Article  PubMed  CAS  Google Scholar 

  • Matsuda M, Korn BS, Hammer RE, Moon YA, Komuro R, Horton JD, Goldstein JL, Brown MS, Shimomura I (2001) SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev 15(10):1206–1216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McDonough PM, Maciejewski-Lenoir D, Hartiq SM, Hanna RA, Whittaker R (2013) Differential phosphorylation of perilipin 1A at the initiation of lipolysis revealed by novel monoclonal antibodies and high content analysis. PLoS ONE 8(2):e55511

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ntambi JM, Miyazaki M, Dobrzyn A (2004) Regulation of stearoyl-CoA desaturase expression. Lipids 39(11):1061–1065

    Article  PubMed  CAS  Google Scholar 

  • Palmquist DL, St-Pierre N, McClure KE (2004) Tissue fatty acid profiles can be used to quantify endogenous rumenic acid synthesis in lambs. J Nutr 134(9):2407–2414

    PubMed  CAS  Google Scholar 

  • Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM (2000) Transcriptional regulation of adipogenesis. Genes Dev 14(11):1293–1307

    PubMed  CAS  Google Scholar 

  • Rudolph MC, McManaman JL, Phang T, Russell T, Kominsky DJ, Serkova NJ, Stein T, Anderson SM, Neville MC (2007) Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol Genomics 28:323–336

    Article  PubMed  CAS  Google Scholar 

  • Rudolph MC, Monks J, Burns V, Phistry M, Marians R, Foote MR, Bauman DE, Anderson SM, Neville MC (2010) Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium. Am J Physiol Endocrinol Metab 299(6):E918–E927

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Samulin J, Berget I, Lien S, Sundvold H (2008) Differential gene expression of fatty acid binding proteins during porcine adipogenesis. Comp Biochem Physiol B Biochem Mol Biol 151(2):147–152

    Article  PubMed  Google Scholar 

  • Shen YH, Song GX, Liu YQ, Sun W, Zhou LJ, Liu HL, Yang R, Sheng YH, Qian LM, Kong XQ (2012) Silencing of FABP3 promotes apoptosis and induces mitochondrion impairment in embryonic carcinoma cells. J Bioenerg Biomembr 44(3):317–323

    Article  PubMed  CAS  Google Scholar 

  • Shimano H (2001) Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res 40(6):439–452

    Article  PubMed  CAS  Google Scholar 

  • Spitsberg VL, Matitashvili E, Gorewit RC (1995) Association and coexpression of fatty-acid-binding protein and glycoprotein CD36 in the bovine mammary gland. Eur J Biochem 230:872–878

    Article  PubMed  CAS  Google Scholar 

  • Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79(7):1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Saghatelian A, Chong LW, Zhang CL, Cravatt BF, Evans RM (2007) Maternal PPAR gamma protects nursing neonates by suppressing the production of inflammatory milk. Genes Dev 21(15):1895–1908

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Whetstone HD, Hurley WL, Davis CL (1986) Identification and characterization of a fatty acid binding protein in bovine mammary gland. Comp Biochem Physiol B 85(3):687–692

    PubMed  CAS  Google Scholar 

  • Yang C, Jo SH, Csernus B, Hyjek E, Liu Y, Chadburn A, Wang YL (2007) Activation of peroxisome proliferator-activated receptor gamma contributes to the survival of T lymphoma cells by affecting cellular metabolism. Am J Pathol 170(2):722–732

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yonezawa T, Yonekura S, Kobayashi Y, Hagino A, Katoh K, Obara Y (2004) Effects of long-chain fatty acids on cytosolic triacylglycerol accumulation and lipid droplet formation in primary cultured bovine mammary epithelial cells. J Dairy Sci 87(8):2527–2534

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was financially supported by Major State Basic Research Development Program of China (973 Program, No. 2011CB100804), High Technology Project of Ministry of Science and Technology of China (863 Project, No. 2013AA102504-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-jun Gao.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, My., Hou, Xm., Qu, B. et al. Functional analysis of FABP3 in the milk fat synthesis signaling pathway of dairy cow mammary epithelial cells. In Vitro Cell.Dev.Biol.-Animal 50, 865–873 (2014). https://doi.org/10.1007/s11626-014-9780-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9780-z

Keywords

Navigation