Skip to main content

Advertisement

Log in

Immune Cell Infiltration and the Expression of PD-1 and PD-L1 in Primary PDGFRA-Mutant Gastrointestinal Stromal Tumors

  • Original Article
  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Purpose

To characterize the immune cell profile and expression of PD-1, PD-L1, and IDO in PDGFRA-mutant gastrointestinal stromal tumors (GISTs).

Methods

The clinicopathological data of PDGFRA-mutant GIST patients who received surgical resection in Zhongshan Hospital between January 2013 and August 2019 were reviewed retrospectively. The specimens of tissue chips were detected for immune cell infiltration and the expression of PD-1, PD-L1, and IDO by immunohistochemical staining.

Results

CD3+, CD8+, and CD68+ cells were the main infiltrating immune cells in the 42 patients included in this study. In addition, CD4+, CD56+, Foxp3+, and CD20+ cells were also observed. A higher CD8+ T cell count was associated with smaller tumor size and PDGFRA D842V mutation (P = 0.047, P = 0.005). A higher CD3+ and CD68+ cell count was associated with a higher mitotic index (P = 0.022, P = 0.006). CD4+ and CD20+ cell count was associated with tumor morphology (P = 0.002, P = 0.045). PD-1 expression was present in 37 (88%) samples. Eighteen samples were positive for PD-L1 expression, and it was higher in small vs. large tumors (P = 0.012) and epithelioid and mixed cell type vs. spindle cell type GISTs (P = 0.046). IDO expression was positive in all 42 patients. The number of CD4+ cells was significantly greater in the specimens with high IDO expression (P = 0.012).

Conclusion

There were abundant infiltrating immune cells in PDGFRA-mutant GISTs. PD-L1 expression was negatively associated with tumor size. The immunotherapy targeting PD-1/PD-L1 checkpoint and IDO may be valuable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

IDO:

Indoleamine-2,3-dioxygenase

PD-1:

Programmed cell death protein-1

PD-L1:

Programmed cell death protein ligand-1

GISTs:

Gastrointestinal stromal tumors

PDGFRA:

Platelet-derived growth factor receptor alpha

TKIs:

Tyrosine kinase inhibitors

NIH:

National Institutes of Health

TIL:

Tumor-infiltrating lymphocyte

Treg:

Regulatory T cell

TMA:

Tissue microarray

TPS:

Tumor proportion score

NCCN:

National comprehensive cancer network

NSCLC:

Non-small cell lung cancer

HPF:

High-power field

References

  1. GD, D., von Mehren M, CR, A., RP, D., KN, G., & RG, M., et al. (2010). NCCN Task Force report: update on the management of patients with gastrointestinal stromal tumors. Journal of the National Comprehensive Cancer Network : JNCCN S1-S41, S42-S44. https://doi.org/10.6004/jnccn.2010.0116.

  2. Heinrich, M. C., Corless, C. L., Duensing, A., McGreevey, L., Chen, C. J., & Joseph, N., et al. (2003). PDGFRA activating mutations in gastrointestinal stromal tumors. Science, 299(5607), 708–710. https://doi.org/10.1126/science.1079666.

  3. Demetri, G. D., von Mehren, M., Blanke, C. D., Van den Abbeele, A. D., Eisenberg, B., & Roberts, P. J., et al. (2002). Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med, 347(7), 472-480. https://doi.org/10.1056/NEJMoa020461.

  4. Demetri, G. D., Reichardt, P., Kang, Y. K., Blay, J. Y., Rutkowski, P., & Gelderblom, H., et al. (2013). Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet, 381(9863), 295-302. https://doi.org/10.1016/S0140-6736(12)61857-1.

  5. P, R., YK, K., P, R., J, S., LS, R., & B, S., et al. (2015). Clinical outcomes of patients with advanced gastrointestinal stromal tumors: safety and efficacy in a worldwide treatment-use trial of sunitinib. Cancer, 121(9), 1405-1413. https://doi.org/10.1002/cncr.29220.

  6. Debiec-Rychter, M., Dumez, H., Judson, I., Wasag, B., Verweij, J., & Brown, M., et al. (2004). Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer, 40(5), 689-695. https://doi.org/10.1016/j.ejca.2003.11.025.

  7. Rusakiewicz, S., Perier, A., Semeraro, M., Pitt, J. M., Pogge, V. S. E., & Reiners, K. S., et al. (2017). NKp30 isoforms and NKp30 ligands are predictive biomarkers of response to imatinib mesylate in metastatic GIST patients. Oncoimmunology, 6(1), e1137418. https://doi.org/10.1080/2162402X.2015.1137418.

  8. Rusakiewicz, S., Semeraro, M., Sarabi, M., Desbois, M., Locher, C., & Mendez, R., et al. (2013). Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. Cancer Res, 73(12), 3499-3510. https://doi.org/10.1158/0008-5472.CAN-13-0371.

  9. Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer, 12(4), 252-264. https://doi.org/10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koshkin, V. S., Barata, P. C., Zhang, T., George, D. J., Atkins, M. B., & Kelly, W. J., et al. (2018). Clinical activity of nivolumab in patients with non-clear cell renal cell carcinoma. J Immunother Cancer, 6(1), 9. https://doi.org/10.1186/s40425-018-0319-9.

  11. DD, S., D, T., MA, N., & S, G. (2018). PD1/PDL1 inhibitors for the treatment of advanced urothelial bladder cancer. OncoTargets and therapy, 11, 5973–5989. https://doi.org/10.2147/OTT.S135157.

  12. B, T., Z, C., YB, C., X, L., D, W., & J, C., et al. (2020). Safety, Efficacy and Biomarker Analysis of Toripalimab in previously treated advanced melanoma: results of the POLARIS-01 multicenter phase II trial. Clinical cancer research : an official journal of the American Association for Cancer Research. https://doi.org/10.1158/1078-0432.CCR-19-3922.

  13. Shi, Y., Duan, J., Guan, Q., Xue, P., & Zheng, Y. (2020). Effectivity and safety of PD-1/PD-L1 inhibitors for different level of PD-L1-positive, advanced NSCLC: A meta-analysis of 4939 patients from randomized controlled trials. Int Immunopharmacol, 84(106452. https://doi.org/10.1016/j.intimp.2020.106452.

  14. Bertucci, F., Finetti, P., Mamessier, E., Pantaleo, M. A., Astolfi, A., & Ostrowski, J., et al. (2015). PDL1 expression is an independent prognostic factor in localized GIST. Oncoimmunology, 4(5), e1002729. https://doi.org/10.1080/2162402X.2014.1002729.

  15. Seifert, A. M., Zeng, S., Zhang, J. Q., Kim, T. S., Cohen, N. A., & Beckman, M. J., et al. (2017). PD-1/PD-L1 Blockade Enhances T-cell Activity and Antitumor Efficacy of Imatinib in Gastrointestinal Stromal Tumors. Clin Cancer Res, 23(2), 454–465. https://doi.org/10.1158/1078-0432.CCR-16-1163.

  16. Joensuu, H., Vehtari, A., Riihimaki, J., Nishida, T., Steigen, S. E., & Brabec, P., et al. (2012). Risk of recurrence of gastrointestinal stromal tumour after surgery: an analysis of pooled population-based cohorts. Lancet Oncol, 13(3), 265-274. https://doi.org/10.1016/S1470-2045(11)70299-6.

  17. Mason, D. Y., Cordell, J., Brown, M., Pallesen, G., Ralfkiaer, E., & Rothbard, J., et al. (1989). Detection of T cells in paraffin wax embedded tissue using antibodies against a peptide sequence from the CD3 antigen. J Clin Pathol, 42(11), 1194-1200. https://doi.org/10.1136/jcp.42.11.1194.

  18. Tedder, T. F., & Engel, P. (1994). CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today, 15(9), 450–454. https://doi.org/10.1016/0167-5699(94)90276-3.

  19. Dalbeth, N., Gundle, R., Davies, R. J., Lee, Y. C., McMichael, A. J., & Callan, M. F. (2004). CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation. J Immunol, 173(10), 6418–6426. https://doi.org/10.4049/jimmunol.173.10.6418.

  20. Kryczek, I., Liu, R., Wang, G., Wu, K., Shu, X., & Szeliga, W., et al. (2009). FOXP3 defines regulatory T cells in human tumor and autoimmune disease. Cancer Res, 69(9), 3995–4000. https://doi.org/10.1158/0008-5472.CAN-08-3804.

  21. Blakely, A. M., Matoso, A., Patil, P. A., Taliano, R., Machan, J. T., & Miner, T. J., et al. (2018). Role of immune microenvironment in gastrointestinal stromal tumours. Histopathology, 72(3), 405-413. https://doi.org/10.1111/his.13382.

  22. Agaimy, A., Wunsch, P. H., Hofstaedter, F., Blaszyk, H., Rummele, P., & Gaumann, A., et al. (2007). Minute gastric sclerosing stromal tumors (GIST tumorlets) are common in adults and frequently show c-KIT mutations. Am J Surg Pathol, 31(1), 113-120. https://doi.org/10.1097/01.pas.0000213307.05811.f0.

  23. Yao, M., Ventura, P. B., Jiang, Y., Rodriguez, F. J., Wang, L., & Perry, J., et al. (2020). Astrocytic trans-Differentiation Completes a Multicellular Paracrine Feedback Loop Required for Medulloblastoma Tumor Growth. Cell, 180(3), 502-520. https://doi.org/10.1016/j.cell.2019.12.024.

  24. Cameron, S., Haller, F., Dudas, J., Moriconi, F., Gunawan, B., & Armbrust, T., et al. (2008). Immune cells in primary gastrointestinal stromal tumors. Eur J Gastroenterol Hepatol, 20(4), 327-334. https://doi.org/10.1097/MEG.0b013e3282f3a403.

  25. van Dongen, M., Savage, N. D., Jordanova, E. S., Briaire-de, B. I., Walburg, K. V., & Ottenhoff, T. H., et al. (2010). Anti-inflammatory M2 type macrophages characterize metastasized and tyrosine kinase inhibitor-treated gastrointestinal stromal tumors. Int J Cancer, 127(4), 899-909. https://doi.org/10.1002/ijc.25113.

  26. Tan, Y., Trent, J. C., Wilky, B. A., Kerr, D. A., & Rosenberg, A. E. (2017). Current status of immunotherapy for gastrointestinal stromal tumor. Cancer Gene Ther, 24(3), 130-133. https://doi.org/10.1038/cgt.2016.58.

    Article  CAS  PubMed  Google Scholar 

  27. Cameron, S., Gieselmann, M., Blaschke, M., Ramadori, G., & Fuzesi, L. (2014). Immune cells in primary and metastatic gastrointestinal stromal tumors (GIST). Int J Clin Exp Pathol, 7(7), 3563-3579.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. M, C., Y, W., D, W., Y, D., W, H., & N, Z., et al. (2020). Increased High-Risk Human Papillomavirus Viral Load Is Associated With Immunosuppressed Microenvironment and Predicts a Worse Long-Term Survival in Cervical Cancer Patients. American journal of clinical pathology, 153(4), 502-512. https://doi.org/10.1093/ajcp/aqz186.

  29. YH, N., XX, Z., ZY, L., XF, H., ZY, W., & Y, Y., et al. (2019). Tumor-Infiltrating CD1a DCs and CD8/FoxP3 Ratios Served as Predictors for Clinical Outcomes in Tongue Squamous Cell Carcinoma Patients. Pathology oncology research : POR. https://doi.org/10.1007/s12253-019-00701-5.

  30. Eich, M. L., Chaux, A., Mendoza, R. M., Guner, G., Taheri, D., & Rodriguez, P. M., et al. (2020). Tumour immune microenvironment in primary and metastatic papillary renal cell carcinoma. Histopathology, 76(3), 423-432. https://doi.org/10.1111/his.13987.

  31. Leffers, N., Gooden, M. J., de Jong, R. A., Hoogeboom, B. N., Ten, H. K., & Hollema, H., et al. (2009). Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother, 58(3), 449-459. https://doi.org/10.1007/s00262-008-0583-5.

  32. Shinto, E., Hase, K., Hashiguchi, Y., Sekizawa, A., Ueno, H., & Shikina, A., et al. (2014). CD8+ and FOXP3+ tumor-infiltrating T cells before and after chemoradiotherapy for rectal cancer. Ann Surg Oncol, 21 Suppl 3(S414-S421. https://doi.org/10.1245/s10434-014-3584-y.

  33. Vitiello, G. A., Bowler, T. G., Liu, M., Medina, B. D., Zhang, J. Q., & Param, N. J., et al. (2019). Differential immune profiles distinguish the mutational subtypes of gastrointestinal stromal tumor. J Clin Invest, 129(5), 1863-1877. https://doi.org/10.1172/JCI124108.

  34. Pai-Scherf, L., Blumenthal, G. M., Li, H., Subramaniam, S., Mishra-Kalyani, P. S., & He, K., et al. (2017). FDA Approval Summary: Pembrolizumab for Treatment of Metastatic Non-Small Cell Lung Cancer: First-Line Therapy and Beyond. Oncologist, 22(11), 1392–1399. https://doi.org/10.1634/theoncologist.2017-0078.

  35. Chae, Y. K., Pan, A., Davis, A. A., Raparia, K., Mohindra, N. A., & Matsangou, M., et al. (2016). Biomarkers for PD-1/PD-L1 Blockade Therapy in Non-Small-cell Lung Cancer: Is PD-L1 Expression a Good Marker for Patient Selection? Clin Lung Cancer, 17(5), 350-361. https://doi.org/10.1016/j.cllc.2016.03.011.

  36. L, C., S, P., M, M., V, V., M, B., & A, C., et al. (2015). Differential Activity of Nivolumab, Pembrolizumab and MPDL3280A according to the Tumor Expression of Programmed Death-Ligand-1 (PD-L1): Sensitivity Analysis of Trials in Melanoma, Lung and Genitourinary Cancers. PloS one, 10(6), e130142. https://doi.org/10.1371/journal.pone.0130142

  37. Munn, D. H., & Mellor, A. L. (2007). Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest, 117(5), 1147-1154. https://doi.org/10.1172/JCI31178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baban, B., Chandler, P. R., Sharma, M. D., Pihkala, J., Koni, P. A., & Munn, D. H., et al. (2009). IDO activates regulatory T cells and blocks their conversion into Th17-like T cells. J Immunol, 183(4), 2475–2483. https://doi.org/10.4049/jimmunol.0900986.

  39. Sharma, M. D., Baban, B., Chandler, P., Hou, D. Y., Singh, N., & Yagita, H., et al. (2007). Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest, 117(9), 2570-2582. https://doi.org/10.1172/JCI31911.

  40. Balachandran, V. P., Cavnar, M. J., Zeng, S., Bamboat, Z. M., Ocuin, L. M., & Obaid, H., et al. (2011). Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med, 17(9), 1094-1100. https://doi.org/10.1038/nm.2438.

Download references

Funding

This study was supported by the National Natural Science Foundation of China (81773080).

Author information

Authors and Affiliations

Authors

Contributions

X.S., J.S., and W.Y. designed the work and wrote the manuscript. X.G., M.F., A.X., H.L., P.S., and Y.F. analyzed and interpreted the patient data. W.Y. and Y.H. performed the immunohistochemistry examinations. Y.H., K.S., J.S., J.Q., and X.Q. revised the manuscript. X.S., J.S., and W.Y. were major contributors in writing the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yingyong Hou or Kuntang Shen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study was approved by the Clinical Research Ethics Committee of Zhongshan Hospital, Fudan University.

Informed Consent

Informed consent was acquired from all patients for the acquisition of clinical and pathological information and the use of surgical specimens.

Code Availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Sun, J., Yuan, W. et al. Immune Cell Infiltration and the Expression of PD-1 and PD-L1 in Primary PDGFRA-Mutant Gastrointestinal Stromal Tumors. J Gastrointest Surg 25, 2091–2100 (2021). https://doi.org/10.1007/s11605-020-04860-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-020-04860-8

Keywords

Navigation