Skip to main content
Log in

Factors affecting the accuracy of respiratory tracking of the image-guided robotic radiosurgery system

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

To analyze the factors affecting the tracking accuracy of the CyberKnife Synchrony Respiratory Tracking System (SRTS).

Materials and methods

A dynamic motion phantom (motion phantom) reproduced the respiratory motions of each patient treated with the SRTS using a ball as the target. CyberKnife tracked the ball using the SRTS, and this process was recorded by a video camera mounted on the linear accelerator head. The tracking error was evaluated from the images captured by the video camera. Multiple regression analysis was used to identify factors affecting tracking accuracy from 91 cases.

Results

The median tracking error was 1.9 mm (range 0.9–5.3 mm). Four factors affected the tracking accuracy: the average absolute amplitude of the tumor motion in the cranio-caudal (CC) direction (p = 0.007), average position gap due to the phase shift between the internal tumor and external marker positions in the CC direction (p < 0.001), and average velocity of the tumor in the CC (p < 0.001) and anterior–posterior directions (p = 0.033).

Conclusion

We identified factors that affected tracking accuracy. This information may assist the identification of suitable margins that should be added to each patient’s clinical target volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adler JR Jr, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL. The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg. 1997;69(1–4 Pt 2):124–8.

    Article  Google Scholar 

  2. Adler JR Jr, Murphy MJ, Chang SD, Hancock SL. Image-guided robotic radiosurgery. Neurosurgery. 1999;44(6):1299–306.

    PubMed  Google Scholar 

  3. Unger K, Ju A, Oermann E, Suy S, Yu X, Vahdat S, et al. CyberKnife for hilar lung tumors: report of clinical response and toxicity. J Hematol Oncol. 2010;3:39.

    Article  Google Scholar 

  4. van der Voort van Zyp NC, Prévost JB, Hoogeman MS, Praag J, van der Holt B, Levendag PC, et al. Stereotactic radiotherapy with real-time tumor tracking for non-small cell lung cancer: clinical outcome. Radiother Oncol. 2009;91(3):296–300.

    Article  Google Scholar 

  5. Iwata H, Ishikura S, Murai T, Iwabuchi M, Inoue M, Tatewaki K, et al. A phase I/II study on stereotactic body radiotherapy with real-time tumor tracking using CyberKnife based on the Monte Carlo algorithm for lung tumors. Int J Clin Oncol. 2017;22(4):706–14.

    Article  Google Scholar 

  6. Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33(10):3874–900.

    Article  Google Scholar 

  7. Schweikard A, Shiomi H, Adler J. Respiration tracking in radiosurgery. Med Phys. 2004;31(10):2738–41.

    Article  Google Scholar 

  8. Sohail S, James W, William MT, Warren K, Maurer CR. Respiratory motion tracking for robotic radiosurgery. In: Urschel HC, editor. Treating tumors that move with respiration. New York: Springer; 2007. p. 15–29.

    Google Scholar 

  9. Seppenwoolde Y, Berbeco RI, Nishioka S, Shirato H, Heijmen B. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys. 2007;34(7):2774–84.

    Article  Google Scholar 

  10. Hoogeman M, Prevost JB, Nuyttens J, Poll J, Levendag P, Heijmen B. Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by analysis of log files. Int J Radiat Oncol Biol Phys. 2009;74(1):297–303.

    Article  Google Scholar 

  11. Wong KH, Dieterich S, Tang J, Cleary K. Quantitative measurement of CyberKnife robotic arm steering. Technol Cancer Res Treat. 2007;6(6):589–94.

    Article  CAS  Google Scholar 

  12. Nioutsikou E, Seppenwoolde Y, Symonds-Tayler JR, Heijmen B, Evans P, Webb S. Dosimetric investigation of lung tumor motion compensation with a robotic respiratory tracking system: an experimental study. Med Phys. 2008;35(4):1232–40.

    Article  Google Scholar 

  13. Ernst F, Schlaefer A, Schweikard A. Smoothing of respiratory motion traces for motion-compensated radiotherapy. Med Phys. 2010;37(1):282–94.

    Article  Google Scholar 

  14. Pepin EW, Wu H, Zhang Y, Lord B. Correlation and prediction uncertainities in the CyberKnife synchrony respiratory tracking system. Med Phys. 2011;38(7):4036–44.

    Article  Google Scholar 

  15. Chan MK, Kwong DL, Ng SC, Tong AS, Tam EK. Accuracy and sensitivity of four-dimensional dose calculation to systematic motion variability in stereotactic body radiotherapy (SBRT) for lung cancer. J Appl Clin Med Phys. 2012;13(6):3992.

    Article  Google Scholar 

  16. Sumida I, Shiomi H, Higashinaka N, Murashima Y, Miyamoto Y, Yamazaki H, et al. Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid. J Appl Clin Med Phys. 2016;17(2):74–84.

    Article  Google Scholar 

  17. Inoue M, Shiomi H, Iwata H, Taguchi J, Okawa K, Kikuchi C, et al. Development of system using beam's eye view images to measure respiratory motion tracking errors in image-guided robotic radiosurgery system. J Appl Clin Med Phys. 2015;16(1):5049.

    Article  Google Scholar 

  18. Akino Y, Sumida I, Shiomi H, Higashinaka N, Murashima Y, Hayashida M, et al. Evaluation of the accuracy of the CyberKnife Synchrony Respiratory Tracking System using a plastic scintillator. Med Phys. 2018;45:3506.

    Article  Google Scholar 

  19. Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53(4):822–34.

    Article  Google Scholar 

  20. Tsunashima Y, Sakae T, Shioyama Y, Kagei K, Terunuma T, Nohtomi A, et al. Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy. Int J Radiat Oncol Biol Phys. 2004;60(3):951–8.

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Inoue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

All study participants provided informed consent and the study design was approved by the appropriate ethics review board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, M., Okawa, K., Taguchi, J. et al. Factors affecting the accuracy of respiratory tracking of the image-guided robotic radiosurgery system. Jpn J Radiol 37, 727–734 (2019). https://doi.org/10.1007/s11604-019-00859-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-019-00859-7

Keywords

Navigation