Skip to main content
Log in

Low contrast dose protocol involving a 100 kVp tube voltage for hypervascular hepatocellular carcinoma in patients with renal dysfunction

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the feasibility of a 20 % reduced contrast dose hepatic arterial phase (HAP) CT for hypervascular hepatocellular carcinoma (HCC) with 100 kVp.

Materials and methods

The study included 97 patients with hypervascular HCC who underwent dynamic CT, including HAP scanning. The 54 patients had an estimated glomerular filtration rate (eGFR) of ≥60 were scanned with our conventional 120 kVp protocol. The other 43 patients (eGFR < 60) underwent scans using a tube voltage of 100 kVp and a 20 % reduced contrast dose. We compared the estimated effective dose, image noise, tumor-liver contrast (TLC), and contrast-to-noise ratio (CNR) in the hepatic arterial phase between the two groups using the Student’s t test.

Results

Estimated effective dose and image noise were not significantly different between these groups (p = 0.67 and p = 0.20, respectively). The TLC and CNR were significantly higher for the 100 kVp protocol than for the 120 kVp protocol (52.2 HU ± 17.4 vs 40.8 HU ± 18.6, p < 0.01 and 6.8 ± 2.6 vs 5.5 ± 2.4, p = 0.01, respectively).

Conclusion

For hepatic arterial phase CT of hypervascular HCC, 100 kVp scan allows a 20 % reduction in the contrast dose without reduction in image quality compared with a standard 120 kVp CT protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: globocan 2000. Int J Cancer J Int du Cancer. 2001;94:153–6.

    Article  CAS  Google Scholar 

  2. Bruix J, Sherman M. Practice guidelines committee AAftSoLD. Manag Hepatocell Carcinoma. Hepatol. 2005;42:1208–36.

    Google Scholar 

  3. Bruix J, Sherman M. American association for the study of liver d. management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Ohashi I, Hanafusa K, Yoshida T. Small hepatocellular carcinomas: two-phase dynamic incremental CT in detection and evaluation. Radiology. 1993;189:851–5.

    Article  CAS  PubMed  Google Scholar 

  5. Hollett MD, Jeffrey RB Jr, Nino-Murcia M, Jorgensen MJ, Harris DP. Dual-phase helical CT of the liver: value of arterial phase scans in the detection of small (≤1.5 cm) malignant hepatic neoplasms. AJR. 1995;164:879–84.

    Article  CAS  PubMed  Google Scholar 

  6. Katzberg RW, Haller C. Contrast-induced nephrotoxicity: clinical landscape. Kidney Int. 2006;69(Suppl 2006):S3–7.

    Article  Google Scholar 

  7. From AM, Bartholmai BJ, Williams AW, Cha SS, McDonald FS. Mortality associated with nephropathy after radiographic contrast exposure. Mayo Clin Proc. 2008;83:1095–100.

    Article  PubMed  Google Scholar 

  8. Scanlon PJ, Faxon DP, Audet AM, et al. ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American heart association task force on practice guidelines (committee on coronary angiography). Developed in collaboration with the society for cardiac angiography and interventions. J Am Coll Cardiol. 1999;33:1756–824.

    Article  CAS  PubMed  Google Scholar 

  9. Gruberg L, Mintz GS, Mehran R, et al. The prognostic implications of further renal function deterioration within 48 h of interventional coronary procedures in patients with pre-existent chronic renal insufficiency. J Am Coll Cardiol. 2000;36:1542–8.

    Article  CAS  PubMed  Google Scholar 

  10. Yamashita Y, Komohara Y, Takahashi M, et al. Abdominal helical CT: evaluation of optimal doses of intravenous contrast material—a prospective randomized study. Radiology. 2000;216:718–23.

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki H, Oshima H, Shiraki N, Ikeya C, Shibamoto Y. Comparison of two contrast materials with different iodine concentrations in enhancing the density of the aorta, portal vein and liver at multi-detector row CT: a randomized study. Eur Radiol. 2004;14:2099–104.

    Article  PubMed  Google Scholar 

  12. Wintermark M, Maeder P, Verdun FR, et al. Using 80 vs 120 kVp in perfusion CT measurement of regional cerebral blood flow. Am J Neuroradiol. 2000;21:1881–4.

    CAS  PubMed  Google Scholar 

  13. Nakayama Y, Awai K, Funama Y, et al. Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology. 2005;237:945–51.

    Article  PubMed  Google Scholar 

  14. Nakaura T, Awai K, Maruyama N, et al. Abdominal dynamic CT in patients with renal dysfunction: contrast agent dose reduction with low tube voltage and high tube current-time product settings at 256-detector row CT. Radiology. 2011;261:467–76.

    Article  PubMed  Google Scholar 

  15. Marin D, Nelson RC, Samei E, et al. Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection—initial clinical experience. Radiology. 2009;251:771–9.

    Article  PubMed  Google Scholar 

  16. Yanaga Y, Awai K, Nakaura T, et al. Hepatocellular carcinoma in patients weighing 70 kg or less: initial trial of compact-bolus dynamic CT with low-dose contrast material at 80 kVp. AJR. 2011;196:1324–31.

    Article  PubMed  Google Scholar 

  17. Guimaraes LS, Fletcher JG, Harmsen WS, et al. Appropriate patient selection at abdominal dual-energy CT using 80 kV: relationship between patient size, image noise, and image quality. Radiology. 2010;257:732–42.

    Article  PubMed  Google Scholar 

  18. Bischoff B, Hein F, Meyer T, et al. Impact of a reduced tube voltage on CT angiography and radiation dose: results of the PROTECTION I study. JACC Cardiovasc Imaging. 2009;2:940–6.

    Article  PubMed  Google Scholar 

  19. Hausleiter J, Martinoff S, Hadamitzky M, et al. Image quality and radiation exposure with a low tube voltage protocol for coronary CT angiography results of the PROTECTION II Trial. JACC Cardiovasc Imaging. 2010;3:1113–23.

    Article  PubMed  Google Scholar 

  20. Imai E, Horio M, Nitta K, et al. Modification of the Modification of Diet in Renal Disease (MDRD) Study equation for Japan. Am J Kidney Dis. 2007;50:927–37.

    Article  PubMed  Google Scholar 

  21. Kojiro M. Focus on dysplastic nodules and early hepatocellular carcinoma: an Eastern point of view. Liver Transpl. 2004;10:S3–8 Official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society.

    Article  PubMed  Google Scholar 

  22. Kim T, Murakami T, Takahashi S, et al. Effects of injection rates of contrast material on arterial phase hepatic CT. AJR. 1998;171:429–32.

    Article  CAS  PubMed  Google Scholar 

  23. Kitao A, Zen Y, Matsui O, Gabata T, Nakanuma Y. Hepatocarcinogenesis: multistep changes of drainage vessels at CT during arterial portography and hepatic arteriography—radiologic-pathologic correlation. Radiology. 2009;252:605–14.

    Article  PubMed  Google Scholar 

  24. Ueda K, Matsui O, Kawamori Y, et al. Hypervascular hepatocellular carcinoma: evaluation of hemodynamics with dynamic CT during hepatic arteriography. Radiology. 1998;206:161–6.

    Article  CAS  PubMed  Google Scholar 

  25. Sherman M. Diagnosis of small hepatocellular carcinoma. Hepatology. 2005;42:14–6.

    Article  PubMed  Google Scholar 

  26. Huda W, Ogden KM. Optimizing abdominal CT dose and image quality with respect to X-ray tube voltage. Med Imaging. 2004;5368:499–507.

    Google Scholar 

  27. Sultana S, Awai K, Nakayama Y, et al. Hypervascular hepatocellular carcinomas: bolus tracking with a 40-detector CT scanner to time arterial phase imaging. Radiology. 2007;243:140–7.

    Article  PubMed  Google Scholar 

  28. Christner JA, Kofler JM, McCollough CH. Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International commission on radiological protection publication 103 or dual-energy scanning. AJR. 2010;194:881–9.

    Article  PubMed  Google Scholar 

  29. Baron RL. Understanding and optimizing use of contrast material for CT of the liver. AJR. 1994;163:323–31.

    Article  CAS  PubMed  Google Scholar 

  30. Huda W, Scalzetti EM, Levin G. Technique factors and image quality as functions of patient weight at abdominal CT. Radiology. 2000;217:430–5.

    Article  CAS  PubMed  Google Scholar 

  31. Ertl-Wagner BB, Hoffmann RT, Bruning R, et al. Multi-detector row CT angiography of the brain at various kilovoltage settings. Radiology. 2004;231:528–35.

    Article  PubMed  Google Scholar 

  32. Nakayama Y, Awai K, Funama Y, et al. Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. AJR. 2006;187:W490–7.

    Article  PubMed  Google Scholar 

  33. Utsunomiya D, Oda S, Funama Y, et al. Comparison of standard- and low-tube voltage MDCT angiography in patients with peripheral arterial disease. Eur Radiol. 2010;20:2758–65.

    Article  PubMed  Google Scholar 

  34. Nakaura T, Awai K, Oda S, et al. Low-kilovoltage, high-tube-current MDCT of liver in thin adults: pilot study evaluating radiation dose, image quality, and display settings. AJR. 2011;196:1332–8.

    Article  PubMed  Google Scholar 

  35. Schindera ST, Diedrichsen L, Muller HC, et al. Iterative reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of diagnostic accuracy, image quality, and radiation dose in a phantom study. Radiology. 2011;260:454–62.

    Article  PubMed  Google Scholar 

  36. Schindera ST, Nelson RC, Mukundan S Jr, et al. Hypervascular liver tumors: low tube voltage, high tube current multi-detector row CT for enhanced detection–phantom study. Radiology. 2008;246:125–32.

    Article  PubMed  Google Scholar 

  37. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology. 2010;256:32–61.

    Article  PubMed  Google Scholar 

  38. Nakaura T, Nakamura S, Maruyama N, et al. Low contrast agent and radiation dose protocol for hepatic dynamic ct of thin adults at 256-detector row CT: effect of low tube voltage and hybrid iterative reconstruction algorithm on image quality. Radiology. 2012;264:445–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Nakaura.

Ethics declarations

Conflict of interest

None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakaura, T., Nagayama, Y., Kidoh, M. et al. Low contrast dose protocol involving a 100 kVp tube voltage for hypervascular hepatocellular carcinoma in patients with renal dysfunction. Jpn J Radiol 33, 566–576 (2015). https://doi.org/10.1007/s11604-015-0457-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-015-0457-7

Keywords

Navigation