Skip to main content
Log in

Novel PIKfyve/Tubulin Dual-target Inhibitor as a Promising Therapeutic Strategy for B-cell Acute Lymphoblastic Leukemia

  • Original Article
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

In B-cell acute lymphoblastic leukemia (B-ALL), current intensive chemotherapies for adult patients fail to achieve durable responses in more than 50% of cases, underscoring the urgent need for new therapeutic regimens for this patient population. The present study aimed to determine whether HZX-02-059, a novel dual-target inhibitor targeting both phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) and tubulin, is lethal to B-ALL cells and is a potential therapeutic for B-ALL patients.

Methods

Cell proliferation, vacuolization, apoptosis, cell cycle, and in-vivo tumor growth were evaluated. In addition, Genome-wide RNA-sequencing studies were conducted to elucidate the mechanisms of action underlying the anti-leukemia activity of HZX-02-059 in B-ALL.

Results

HZX-02-059 was found to inhibit cell proliferation, induce vacuolization, promote apoptosis, block the cell cycle, and reduce in-vivo tumor growth. Downregulation of the p53 pathway and suppression of the phosphoinositide 3-kinase (PI3K)/AKT pathway and the downstream transcription factors c-Myc and NF-κB were responsible for these observations.

Conclusion

Overall, these findings suggest that HZX-02-059 is a promising agent for the treatment of B-ALL patients resistant to conventional therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet, 2020,395(10230):1146–1162

    Article  CAS  PubMed  Google Scholar 

  2. Graux C. Biology of acute lymphoblastic leukemia (ALL): clinical and therapeutic relevance. Transfus Apher Sci, 2011,44(2):183–189

    Article  PubMed  Google Scholar 

  3. Leonard J, Stock W. Progress in adult ALL: incorporation of new agents to frontline treatment. Hematology Am Soc Hematol Educ Program, 2017,2017(1):28–36

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ribera JM, Garcia O, Gil C, et al. Comparison of intensive, pediatric-inspired therapy with nonintensive therapy in older adults aged 55–65 years with Philadelphia chromosome-negative acute lymphoblastic leukemia. Leuk Res, 2018,68:79–84

    Article  PubMed  Google Scholar 

  5. DeAngelo DJ, Stevenson KE, Dahlberg SE, et al. Long-term outcome of a pediatric-inspired regimen used for adults aged 18–50 years with newly diagnosed acute lymphoblastic leukemia. Leukemia, 2015,29(3):526–534

    Article  CAS  PubMed  Google Scholar 

  6. Huang W, Sun X, Li Y, et al. Discovery and Identification of Small Molecules as Methuosis Inducers with in Vivo Antitumor Activities. J Med Chem, 2018,61(12):5424–5434

    Article  CAS  PubMed  Google Scholar 

  7. Feng L, Chen K, Huang W, et al. Pharmacological targeting PIKfyve and tubulin as an effective treatment strategy for double-hit lymphoma. Cell Death Discov, 2022,8(1):39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sbrissa D, Ikonomov OC, Shisheva A. Phosphatidylinositol 3-phosphate-interacting domains in PIKfyve. Binding specificity and role in PIKfyve. Endomenbrane localization. J Biol Chem, 2002,277(8):6073–6079

    Article  CAS  PubMed  Google Scholar 

  9. Stenmark H, Aasland R, Toh BH, et al. Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem, 1996,271(39):24048–24054

    Article  CAS  PubMed  Google Scholar 

  10. Kim SM, Roy SG, Chen B, et al. Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J Clin Invest, 2016,126(11):4088–4102

    Article  PubMed  PubMed Central  Google Scholar 

  11. Krishna S, Palm W, Lee Y, et al. PIKfyve Regulates Vacuole Maturation and Nutrient Recovery following Engulfment. Dev Cell, 2016,38(5):536–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gayle S, Landrette S, Beeharry N, et al. Identification of apilimod as a first-in-class PIKfyve kinase inhibitor for treatment of B-cell non-Hodgkin lymphoma. Blood, 2017,129(13):1768–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Janke C, Magiera MM. The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol, 2020,21(6):307–326

    Article  CAS  PubMed  Google Scholar 

  14. Wloga D, Joachimiak E, Fabczak H. Tubulin Post-Translational Modifications and Microtubule Dynamics. Int J Mol Sci, 2017,18(10):2207

    Article  PubMed  PubMed Central  Google Scholar 

  15. Florian S, Mitchison TJ. Anti-Microtubule Drugs. Methods Mol Biol, 2016,1413:403–421

    Article  CAS  PubMed  Google Scholar 

  16. Maltese WA, Overmeyer JH. Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments. Am J Pathol, 2014,184(6):1630–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Overmeyer JH, Young AM, Bhanot H, et al. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells. Mol Cancer, 2011,10:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sorger PK, Dobles M, Tournebize R, et al. Coupling cell division and cell death to microtubule dynamics. Curr Opin Cell Biol, 1997,9(6):807–814

    Article  CAS  PubMed  Google Scholar 

  19. Horio T, Murata T. The role of dynamic instability in microtubule organization. Front Plant Sci, 2014,5:511

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vandenabeele P, Galluzzi L, Vanden Berghe T, et al. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol, 2010,11(10):700–714

    Article  CAS  PubMed  Google Scholar 

  21. Visvader JE. Cells of origin in cancer. Nature, 2011,469(7330):314–322

    Article  CAS  PubMed  Google Scholar 

  22. Liu JS, Huo CY, Cao HH, et al. Aloperine induces apoptosis and G2/M cell cycle arrest in hepatocellular carcinoma cells through the PI3K/Akt signaling pathway. Phytomedicine, 2019,61:152843

    Article  CAS  PubMed  Google Scholar 

  23. Wang BJ, Zheng WL, Feng NN, et al. The Effects of Autophagy and PI3K/AKT/m-TOR Signaling Pathway on the Cell-Cycle Arrest of Rats Primary Sertoli Cells Induced by Zearalenone. Toxins (Basel), 2018,10(10):398

    Article  CAS  PubMed  Google Scholar 

  24. Li H, Dan C, Gong X, et al. Sorghumol triterpene inhibits the growth of circulating renal cancer cells by promoting cell apoptosis, G2/M cell cycle arrest and downregulating m-TOR/PI3K/AKT signalling pathway. J BUON, 2019,24(1):310–314

    PubMed  Google Scholar 

  25. Dolcet X, Llobet D, Pallares J, et al. NF-kB in development and progression of human cancer. Virchows Arch, 2005,446(5):475–482

    Article  CAS  PubMed  Google Scholar 

  26. Haupt Y, Rowan S, Shaulian E, et al. p53 mediated apoptosis in HeLa cells: transcription dependent and independent mechanisms. Leukemia, 1997,11 Suppl 3:337–339

    PubMed  Google Scholar 

  27. Thompson EB. The many roles of c-Myc in apoptosis. Annu Rev Physiol, 1998,60:575–600

    Article  CAS  PubMed  Google Scholar 

  28. McMahon SB. MYC and the control of apoptosis. Cold Spring Harb Perspect Med, 2014,4(7):a014407

    Article  PubMed  PubMed Central  Google Scholar 

  29. Asano T, Yao Y, Zhu J, et al. The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells. Oncogene, 2004,23(53):8571–8580

    Article  CAS  PubMed  Google Scholar 

  30. Koul D, Yao Y, Abbruzzese JL, et al. Tumor suppressor MMAC/PTEN inhibits cytokine-induced NFkappaB activation without interfering with the IkappaB degradation pathway. J Biol Chem, 2001,276(14):11402–11408

    Article  CAS  PubMed  Google Scholar 

  31. Fujiwara Y, Hosokawa Y, Watanabe K, et al. Blockade of the phosphatidylinositol-3-kinase-Akt signaling pathway enhances the induction of apoptosis by microtubule-destabilizing agents in tumor cells in which the pathway is constitutively activated. Mol Cancer Ther, 2007,6(3):1133–1142

    Article  CAS  PubMed  Google Scholar 

  32. Onishi K, Higuchi M, Asakura T, et al. The PI3K-Akt pathway promotes microtubule stabilization in migrating fibroblasts. Genes Cells, 2007,12(4):535–546

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yin Li, Xian-ming Deng or Bing Xu.

Ethics declarations

The authors have declared that they have no conflicts of interest.

Additional information

This research was funded by the National Natural Science Foundation of China (No. 81770126, No. 81900160, No. 81800163, No. 22025702, and No. 91853203), the Fujian Natural Science Foundation of China (No. 2020J011246 and No. 2021J011359), the Foundation of Health and Family Planning Commission of Fujian Province of China (No. 2020GGB054), the Xiamen Municipal Bureau of Science and Technology (No. 3502Z20209003), and the Fundamental Research Funds for the Central Universities of China (No. 20720190101).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Lai, Q., Li, Zf. et al. Novel PIKfyve/Tubulin Dual-target Inhibitor as a Promising Therapeutic Strategy for B-cell Acute Lymphoblastic Leukemia. CURR MED SCI 44, 298–308 (2024). https://doi.org/10.1007/s11596-024-2847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-024-2847-5

Key words

Navigation