Skip to main content
Log in

Changes in HIF-1α, VEGF, NGF and BDNF levels in cerebrospinal fluid and their relationship with cognitive impairment in patients with cerebral infarction

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

This study was carried out to investigate the role of intrinsic neuroprotective mechanisms in the occurrence and development of vascular cognitive impairment (VCI) with the goal of providing a target for the treatment and prevention of VCI. Inpatients with proven cerebral infarction on cranial computed tomography (CT) were recruited as the ischemic cerebrovascular diseases (ICVD) group, and the patients with mixed stroke were excluded. In ICVD group, 12 patients were diagnosed as having VCI and served as VCI group. Inpatients undergoing surgical operation in our hospital were enrolled as control group. Double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) was employed to detect the levels of hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in the cerebrospinal fluid of patients with ICVD. Associations between the levels of these factors and the Mini-Mental State Examination (MMSE) score were evaluated. In ICVD and VCI groups, the levels of HIF-1α and NGF in the cerebrospinal fluid were markedly lower than those in control group (P=0.037 and P=0.000; P=0.023 and P=0.005). In ICVD and VCI groups, the MMSE score was negatively related to VEGF level in the cerebrospinal fluid (r=−0.327, P=0.021; r=−0.585, P=0.046). In VCI group, HIF-1α level was correlated with NGF level (r=0.589, P=0.044). HIF-1α and NGF are involved in ischemic and hypoxic cerebral injury. The HIF signaling pathway plays an important role in intrinsic neuroprotection. Upregulation and maintenance of HIF-1α and NGF expression may attenuate VCI. Changes in VEGF levels are related to the occurrence and development of cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moorhouse P, Rockwood K. Vascular cognitive impairment: current concepts and clinical developments. Lancet Neurol, 2008,7(3):246–255

    Article  PubMed  Google Scholar 

  2. Ruitenberg A, den Heijer T, Bakker SL, et al. Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol, 2005,57(6):789–794

    Article  PubMed  Google Scholar 

  3. Sarti C, Pantoni L, Bartolini L, et al. Cognitive impairment and chronic cerebral hypoperfusion: what can be learned from experimental models. J Neurol Sci, 2002,203–204:263–266

    Article  PubMed  Google Scholar 

  4. Scheel P, Puls I, Becker G, et al. Volume reduction in cerebral blood flow in patients with vascular dementia. Lancet, 1999,354(9196):2137

    Article  PubMed  CAS  Google Scholar 

  5. de la Torre JC. Vascular risk factor detection and control may prevent Alzheimer’s disease. Ageing Res Rev, 2010,9(3):218–225

    Article  PubMed  Google Scholar 

  6. Farkas E, Luiten PG, Bari F. Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev, 2007,54(1):162–180

    Article  PubMed  CAS  Google Scholar 

  7. de La Torre JC. Critically attained threshold of cerebral hypoperfusion: the CATCH hypothesis of Alzheimer’s pathogenesis. Neurobiol Aging, 2000,21(2):331–342

    Article  PubMed  Google Scholar 

  8. Bergeron M, Gidday JM, Yu AY, et al. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol, 2000,48(3):285–296

    Article  PubMed  CAS  Google Scholar 

  9. Marti HJ, Bernaudin M, Bellail A, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol, 2000,156(3):965–976

    Article  PubMed  CAS  Google Scholar 

  10. Kromer LF. Nerve growth factor treatment after brain injury prevents neuronal death. Science, 1987,235:214

    Article  PubMed  CAS  Google Scholar 

  11. Koda M, Murakami M, Ino H, et al. Brain-derived neurotrophic factor suppresses delayed apoptosis of oligodendrocyes after spinal cord injury in rats. Neurotrauma, 2002,19(6):777–785

    Article  Google Scholar 

  12. Mizuno T, Kuno R, Nitta A, et al. Protective effects of nicergoline against neuronai cell death induced by activated mineroglia and astrocytes. Brain Res, 2005, 1066(1–2):78–85

    Article  PubMed  CAS  Google Scholar 

  13. Ploughman M, Windle V, Maclellan CL, et al. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke, 2009,40(4):1490–1495

    Article  PubMed  CAS  Google Scholar 

  14. Group of Dementia and Cognitive Impairment, Branch of Neuropathy of Chinese Medical Association. Guideline for Diagnosis and Treatment of Vascular Cognitive Impairment. Chin J Neurol (Chinese), 2011,44(2):142–147

    Google Scholar 

  15. Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE, 2007,2007(407):m8

    Article  Google Scholar 

  16. Benarroch EE. Hypoxia-induced mediators and neurologic disease. Neurology, 2009,73(7):560–565

    Article  PubMed  Google Scholar 

  17. Sharp FR, Lu A, Tang Y, et al. Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab, 2000,20(7):1011–1032

    Article  PubMed  CAS  Google Scholar 

  18. Bergeron M, Yu AY, Solway KE, et al. Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci, 1999,11(12):4159–4170

    Article  PubMed  CAS  Google Scholar 

  19. Matsuda T, Abe T, Wu JL, et al. Hypoxia-inducible factor-lalpha DNA induced angiogenesis in a rat cerebral ischemia model. Neurol Res, 2005,27(5):503–508

    Article  PubMed  CAS  Google Scholar 

  20. Lee TH, Kato H, Chen ST, et al. Expression of nerve growth factor and trkA after transient focal cerebral ischemia in rats. Stroke, 1998,29(8):1687–1696

    Article  PubMed  CAS  Google Scholar 

  21. Hwang IK, Lee KY, Yoo KY, et al. Tyrosine kinase A but not phosphacan/protein tyrosine phosphatase-ζ/β immunoreactivity and protein level changes in neurons and astrocytes in the gerbil hippocampus proper after transient forebrain ischemia. Brain Res, 2005,1036:35–41

    Article  PubMed  CAS  Google Scholar 

  22. Wiener CM, Booth G, Semenza GL. In vivo expression of mRNAs encoding hypoxia-inducible factor. Biochem Biophys Res Commun, 1996,225(2):485–488

    Article  PubMed  CAS  Google Scholar 

  23. Stroka DM, Burkhardt T, Desbaillets I, et al. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J, 2001,15(13):2445–2453

    PubMed  CAS  Google Scholar 

  24. Baranova O, Miranda LF, Pichiule P, et al. Neuron-specific inactivation of the hypoxia inducible factor 1α increases brain injury in a mouse model of transient focal cerebral ischemia. J Neurosci, 2007,27(23): 6320–6332

    Article  PubMed  CAS  Google Scholar 

  25. Guo S, Bragina O, Xu Y, et al. Glucose up-regulates HIF-1α expression in primary cortical neurons in response to hypoxia through maintaining cellular redox status. J Neurochem, 2008,105(5):1849–1860

    Article  PubMed  CAS  Google Scholar 

  26. Demidenko ZN, Rapisarda A, Garayoa M, et al. Accumulation of hypoxia-inducible factor-1α is limited by transcription-dependent depletion. Oncogene, 2005,24(30):4829–4838

    Article  PubMed  CAS  Google Scholar 

  27. Kong X, Alvarez-Castelao B, Lin Z, et al. Constitutive/hypoxic degradation of HIF-1α proteins by the proteasome is independent of von Hippel Lindau protein ubiquitylation and the transactivation activity of the protein. J Biol Chem, 2007,282(21):15 498–15 505

    Article  CAS  Google Scholar 

  28. Shweiki D, Itin A, Soffer D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 1992,359(6398): 843–845

    Article  PubMed  CAS  Google Scholar 

  29. Ogunshola OO, Stewart WB, Mihalcik V, et al. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Res Dev Brain Res, 2000,119(1):139–153

    Article  PubMed  CAS  Google Scholar 

  30. Kovàcs Z, Ikezaki K, Samoto K, et al. VEGF and flt: expression time kinetics in rat brain infarct. Stroke, 1996,27(10):1865–1873

    Article  PubMed  Google Scholar 

  31. Hayashi T, Abe K, Suzuki H, et al. Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke, 1997,28(10):2039–2044

    Article  PubMed  CAS  Google Scholar 

  32. Lennmyr F, Ata KA, Funa K, et al. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol, 1998,57(9):874–882

    Article  PubMed  CAS  Google Scholar 

  33. Krum JM, Mani N, Rosenstein JM. Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience, 2002,110(4):589–604

    Article  PubMed  CAS  Google Scholar 

  34. Hayashi T, Abe K, Itoyama Y. Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J Cereb Blood Flow Metab, 1998,18(8):887–895

    Article  PubMed  CAS  Google Scholar 

  35. Zhang ZG, Zhang L, Jiang Q, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest, 2000,106(7):829–838

    Article  PubMed  CAS  Google Scholar 

  36. Bao WL, Lu SD, Wang H, et al. Intraventricular vascular endothelial growth factor antibody increases infarct volume following transient cerebral ischemia. Zhongguo Yao Li Xue Bao, 1999,20(4):313–318

    PubMed  CAS  Google Scholar 

  37. Tarkowskia E, Issa R, Sjogren M, et al. Increased intrathecal levels of the angiogenic factors VEGF and TGF-β in Alzheimer’s disease and vascular dementia. Neurobi Aging, 2000,23(2):237–243

    Article  Google Scholar 

  38. Larsson E, Kuma R, Norberg A, et al. Nerve growth factor R221W responsible for insensitivity to pain is defectively processed and accumulates as proNGF. Neurobiol Dis, 2009,33(2):221–228

    Article  PubMed  CAS  Google Scholar 

  39. Lee TH, Yang JT, Ko YS, et al. Influence of ischemic preconditioning on levels of nerve growth factor, brain-derived neurotrophic factor and their high-affinity receptors in hippocampus following forebrain ischemia. Brain Res, 2008,1187:1–11

    Article  PubMed  CAS  Google Scholar 

  40. Walton M, Connor B, Lawlor P. Neuronal death and survival in two models of hypoxic-ischemic brain damage. Brain Res Brain Res Rev, 1999,29(23):137–168

    Article  PubMed  CAS  Google Scholar 

  41. Schabitz WR, Schwab S, Spranger M, et al. Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemic in rats. J Cereb Blood Flow Metab, 1997,17(5):500–506

    Article  PubMed  CAS  Google Scholar 

  42. Zhou H, Mao M, Liu WP, et al. Expression of BDNF receptor TrkBmRNA in hypoxia-induced fetal cortical neurons. Huaxi Yike Daxue Xuebao (Chinese), 2002,33(4):573–576

    CAS  Google Scholar 

  43. Nakamura K, Martin KC, Jackson JK, et al. Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer Res, 2006,66(8):4249–4255

    Article  PubMed  CAS  Google Scholar 

  44. Nakamura K, Tan F, Li ZJ, et al. NGF activation of TrkA induces vascular endothelial growth factor expression via induction of hypoxia-inducible factor-1α. Mol Cell Neurosci, 2011,46(2):498–506

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-jian Zhang  (章军建).

Additional information

This project was supported by the National Natural Science Foundation of China (No. 81171029).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ke, Xj., Zhang, Jj. Changes in HIF-1α, VEGF, NGF and BDNF levels in cerebrospinal fluid and their relationship with cognitive impairment in patients with cerebral infarction. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 33, 433–437 (2013). https://doi.org/10.1007/s11596-013-1137-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-013-1137-4

Key words

Navigation