Skip to main content
Log in

Convergence rates of damped inerial dynamics from multi-degree-of-freedom system

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this article, we investigate the convergence rate of the following dynamic system in \({\mathbb {R}}^{n}\)

$$\begin{aligned} \ddot{x}(t)+\frac{A}{t^\theta }{\dot{x}}(t)+\nabla F(x(t))=0,\quad t>0, \end{aligned}$$

where A denotes the constant positive definite matrix and the potential function \(F:{\mathbb {R}}^n\rightarrow {\mathbb {R}}\) is continuous differentiable. This system is of vital importance, especially in optimization and engineering. This article presents new convergence rates of the above dynamics when F(x) satisfies some local geometrical properties by constructing a proper Lyapunov function. Finally, some numerical experiments were performed to explain the convergence results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alecsa, C.D.: The long time behavior and the rate of convergence of symplectic convex algorithms obtained via splitting discretizations of inertial damping systems (2020). arXiv:2001.10831

  2. Alecsa, C.D., László, S.C., Viorel, A.: A gradient-type algorithm with backward inertial steps associated to a nonconvex minimization problem. Numer. Algorithms. 83, 485–512 (2019). https://doi.org/10.1007/s11075-019-00765-z

    Article  MathSciNet  MATH  Google Scholar 

  3. Alvarez, F.: On the minimizing property of a second order dissipative system in hilbert spaces. SIAM J. Control. Optim. 38(4), 1102–1119 (2000). https://doi.org/10.1137/s0363012998335802

    Article  MathSciNet  MATH  Google Scholar 

  4. Alvarez, F., Attouch, H., Bolte, J., Redont, P.: A second-order gradient-like dissipative dynamical system with hessian-driven damping. application to optimization and mechanics. Journal de mathématiques pures et appliquées. 81(8), 747–779 (2002). https://doi.org/10.1016/S0021-7824(01)01253-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Antonin, C., Charles, D.: On the convergence of the iterates of the fast iterative shrinkage/thresholding algorithm. J. Optim. Theory Appl. 166(3), 968–982 (2015). https://doi.org/10.1007/s10957-015-0746-4

    Article  MathSciNet  Google Scholar 

  6. Attouch, H., Cabot, A.: Asymptotic stabilization of inertial gradient dynamics with time-dependent viscosity. J. Differential Equations 263(9), 5412–5458 (2017). https://doi.org/10.1016/j.jde.2017.06.024

    Article  MathSciNet  MATH  Google Scholar 

  7. Attouch, H., Chbani, Z., Fadili, J., Riahi, H.: First-order optimization algorithms via inertial systems with hessian driven damping. Math. Program. (2020). https://doi.org/10.1007/s10107-020-01591-1

    Article  MATH  Google Scholar 

  8. Attouch, H., Chbani, Z., Peypouquet, J., Redont, P.: Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity. Math. Program. 168(1), 123–175 (2018). https://doi.org/10.1007/s10107-016-0992-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Attouch, H., Goudou, X., Redont, P.: The heavy ball with friction method, I. the continuous dynamical system global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system. Commun. Contemporary Math. 2(1), 1–43 (2000). https://doi.org/10.1142/S0219199700000025

    Article  MathSciNet  MATH  Google Scholar 

  10. Aujol, J.F., Dossal, C.: Optimal rate of convergence of an ode associated to the fast gradient descent schemes for \(b>0\) (2017). https://hal.inria.fr/hal-01547251

  11. Aujol, J.F., Dossal, C., Rondepierre, A.: Optimal convergence rates for nesterov acceleration. SIAM J. Optim. 29(4), 3131–3153 (2019). https://doi.org/10.1137/18M1186757

    Article  MathSciNet  MATH  Google Scholar 

  12. Balti, M., May, R.: Asymptotic for the perturbed heavy ball system with vanishing damping term. Evol. Equ. Control Theory. 6(2), 177–186 (2017). https://doi.org/10.3934/eect.2017010

    Article  MathSciNet  MATH  Google Scholar 

  13. Cabot, A.: Asymptotics for a gradient system with memory term. Proc. Am. Math. Soc. 137(9), 3013–3024 (2009). https://doi.org/10.1090/s0002-9939-09-09910-9

    Article  MathSciNet  MATH  Google Scholar 

  14. Cabot, A., Engler, H., Gadat, S.: On the long time behavior of second order differential equations with asymptotically small dissipation. Trans. Am. Math. Soc. 361(11), 5983–6017 (2009). https://doi.org/10.1090/S0002-9947-09-04785-0

    Article  MathSciNet  MATH  Google Scholar 

  15. Chopra, A.K.: Dynamics of structures. Pearson Education India (2007)

  16. Hale, J.K.: Asymptotic behavior of dissipative systems. 25. American Mathematical Society. (2010)

  17. Haraux, A.: Systemes dynamiques dissipatifs et applications. Elsevier Masson, Amsterdam (1991)

    MATH  Google Scholar 

  18. Haraux, A., Jendoubi, M.A.: Convergence of solutions of second-order gradient-like systems with analytic nonlinearities. J. Differential Equ. (1998). https://doi.org/10.1006/jdeq.1997.3393

    Article  MathSciNet  MATH  Google Scholar 

  19. Haraux, A., Jendoubi, M.A.: Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term. Evol. Equ. Control Theory. 2(3), 461–470 (2013). https://doi.org/10.3934/eect.2013.2.461

    Article  MathSciNet  MATH  Google Scholar 

  20. Jendoubi, M.A., May, R.: Asymptotics for a second-order differential equation with nonautonomous damping and an integrable source term. Appl. Anal. 94(2), 435–443 (2015). https://doi.org/10.1080/00036811.2014.903569

    Article  MathSciNet  MATH  Google Scholar 

  21. László, S.C.: Convergence rates for an inertial algorithm of gradient type associated to a smooth non-convex minimization. Math. Program. (2020). https://doi.org/10.1007/s10107-020-01534-w

    Article  Google Scholar 

  22. László, S.C.: A forward-backward algorithm with different inertial terms for the minimization of the sum of two non-convex functions. (2020). arXiv:2002.07154

  23. Li, Z., Xue, X.: Convergence of analytic gradient-type systems with periodicity and its applications in kuramoto models. Appl. Math. Lett. 90, 194–201 (2019). https://doi.org/10.1016/j.aml.2018.10.015

    Article  MathSciNet  MATH  Google Scholar 

  24. Love, J.S., Tait, M.J., Toopchi-Nezhad, H.: A hybrid structural control system using a tuned liquid damper to reduce the wind induced motion of a base isolated structure. Eng. Struct. 33(3), 738–746 (2011). https://doi.org/10.1016/j.engstruct.2010.11.027

    Article  Google Scholar 

  25. Marano, G.C., Greco, R., Trentadue, F., Chiaia, B.: Constrained reliability-based optimization of linear tuned mass dampers for seismic control. Int. J. Solids Struct. 44(22–23), 7370–7388 (2007). https://doi.org/10.1016/j.ijsolstr.2007.04.012

    Article  MATH  Google Scholar 

  26. May, R.: Asymptotic for a second-order evolution equation with convex potential and vanishing damping term. Turk. J. Math. 41(3), 681–685 (2017). https://doi.org/10.3906/mat-1512-28

    Article  MathSciNet  MATH  Google Scholar 

  27. Nesterov, Y.: A method of solving a convex programming problem with convergence rate \(o(1/k^2)\). Soviet Math. Program. 27(2), 372–376 (1983)

    MATH  Google Scholar 

  28. Parikh, N., Boyd, S.: Proximal algorithms. Found Trends Opt. 1(3), 127–239 (2014). https://doi.org/10.1561/2400000003

    Article  Google Scholar 

  29. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964). https://doi.org/10.1016/0041-5553(64)90137-5

    Article  Google Scholar 

  30. Polyak, B.T., Shcherbakov, P.S.: Optimisation and asymptotic stability. Int. J. Control 91(11), 2404–2410 (2018). https://doi.org/10.1080/00207179.2016.1257154

    Article  MathSciNet  MATH  Google Scholar 

  31. Sebbouh, O., Dossal, C., Rondepierre, A.: Convergence rates of damped inertial dynamics under geometric conditions and perturbations. SIAM J. Optim. 30(3), 1850–1877 (2020). https://doi.org/10.1137/19M1272767

    Article  MathSciNet  MATH  Google Scholar 

  32. Su, W., Boyd, S., Candes, E.J.: A differential equation for modeling nesterovs accelerated gradient method: Theory and insights. J. Mach. Learn. Res. 17(153), 1–43 (2016). https://doi.org/10.5555/2969033.2969107

    Article  MathSciNet  MATH  Google Scholar 

  33. Wen, B., Xue, X.: The long time behavior of a class of second-order gradient-like systems with vanishing dissipative term and non-convex analytic potential. Appl. Math. Lett. 43, 33–37 (2015). https://doi.org/10.1016/j.aml.2014.11.010

    Article  MathSciNet  MATH  Google Scholar 

  34. Xiang, P., Nishitani, A.: Optimum design for more effective tuned mass damper system and its application to base-isolated buildings. Struct. Control. Health Monit. 21(1), 98–114 (2014). https://doi.org/10.1002/stc.1556

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 11201095), the Postdoctoral research startup foundation of Heilongjiang (No. LBH-Q14044), the Science Research Funds for Overseas Returned Chinese Scholars of Heilongjiang Province (No. LC201502)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Existence and uniqueness of the solution of (1)

Appendix: Existence and uniqueness of the solution of (1)

Theorem 4

For any initial value \((x_0\), \(v_0)\), there is a unique solution of system (1) defined on \([0,+\infty )\) satisfying \(x(0)=x_0\), \({\dot{x}}(0)=v_0\), if F(x) is bounded from below.

Proof

Let \(X(t)=(x(t),{\dot{x}}(t))^T\), \(X(0)=(x_0, v_0)^T\), \(G(u,v)=(v,-\frac{Av}{t}-\nabla F(u))^T\). So the system is equivalent to the following system:

$$\begin{aligned} {\dot{X}}(t)=G(X(t)). \end{aligned}$$
(31)

Because of the Lipschitz continuity of \(\nabla F\) on a bounded subset of \({\mathbb {R}}^n\), it is easy to obtain the uniqueness and existence of a local solution associated with the system (31), it is also ture for system (1).

Assume that the maximum existence interval of the solution of (1) is \([t_0,T_{\max } )\), where \(0<T_{\max }\le +\infty \). Let \(W:[t_{0},+\infty )\rightarrow {\mathbb {R}}\) be defined by

$$\begin{aligned} W(t)=\frac{1}{2}\Vert {\dot{x}}(t)\Vert ^2+F(x(t)). \end{aligned}$$

For each \(t\ge t_{0}\),

$$\begin{aligned} {\dot{W}}(t)=\langle -\frac{A}{t}{\dot{x}}(t),{\dot{x}}(t) \rangle \le 0. \end{aligned}$$

So W(t) is nonincreasing, we can get:

$$\begin{aligned} \frac{1}{2}\Vert {\dot{x}}(t)\Vert ^2+F(x(t))\le \frac{1}{2}\Vert {\dot{x}}(t_0)\Vert ^2+F(x(t_0)). \end{aligned}$$

Since the function F is bounded from below,

$$\begin{aligned} \frac{1}{2}\Vert {\dot{x}}(t)\Vert ^2\le \frac{1}{2}\Vert {\dot{x}}(t_0)\Vert ^2+F(x(t_0))-\inf F(x(t)). \end{aligned}$$

So \({\dot{x}}(t)\in L^{\infty }([t_0,T_{\max }); {\mathbb {R}}^n)\), assume \(T_{\max }<+\infty \),

$$\begin{aligned} \Vert x(t_1)-x(t_2)\Vert \le \int _{t_1}^{t_2}\Vert {\dot{x}}(t)\Vert dt \le \vert t_1-t_2\vert \cdot \max \limits _{t\in [t_1,t_2]} \Vert {\dot{x}}(t)\Vert . \end{aligned}$$

Note that \(T_{\max }<+\infty \), hence \(x(t)\in L^{\infty }([0,T_{\max });{\mathbb {R}}^n)\) and \(x_\infty :=\lim \limits _{t\rightarrow T_{\max }}x(t)\) exists in \({\mathbb {R}}^n\). Similarly, we define \({\dot{x}}_\infty :=\lim \limits _{t\rightarrow T_{\max }}{\dot{x}}(t)\), now we take \((x_\infty ,{\dot{x}}_\infty )\) as the initial value for the system, so the solution can be extended to a larger intervals, this is impossible. Henece, \(T_{\max }=+\infty \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, B., Zhuge, X. & Ren, H. Convergence rates of damped inerial dynamics from multi-degree-of-freedom system. Optim Lett 16, 2753–2774 (2022). https://doi.org/10.1007/s11590-022-01855-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-022-01855-z

Keywords

Navigation