Skip to main content
Log in

A constrained interval approach to the generalized distance geometry problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This paper presents a new approach to the generalized distance geometry problem, based on a model that uses constraint interval arithmetic. In addition to theoretical results, we give some computational experiments that illustrate the better performance of the proposed approach, compared to others from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agra, A., Figueiredo, R., Lavor, C., Maculan, N., Pereira, A., Requejo, C.: Feasibility check for the distance geometry problem: an application to molecular conformations. Int. Trans. Oper. Res. 24, 1023–1040 (2017)

    Article  MathSciNet  Google Scholar 

  2. Alves, R., Lavor, C.: Geometric algebra to model uncertainties in the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebra 27, 439–452 (2017)

    Article  MathSciNet  Google Scholar 

  3. Alves, R., Lavor, C., Souza, C., Souza, M.: Clifford algebra and discretizable distance geometry. Math. Methods Appl. Sci. 41(11), 4063–4073 (2018)

    Article  MathSciNet  Google Scholar 

  4. Billinge, S., Duxbury, P., Gonçalves, D., Lavor, C., Mucherino, A.: Assigned and unassigned distance geometry: applications to biological molecules and nanostructures. 4OR 14, 337–376 (2016)

    Article  MathSciNet  Google Scholar 

  5. Brünger, A., Nilges, M.: Computational challenges for macromolecular structure determination by X-ray crystallography and solution NMR-spectroscopy. Q. Rev. Biophys. 26, 49–125 (1993)

    Article  Google Scholar 

  6. Carvalho, R., Lavor, C., Protti, F.: Extending the geometric build-up algorithm for the molecular distance geometry problem. Inf. Process. Lett. 108, 234–237 (2008)

    Article  MathSciNet  Google Scholar 

  7. Cassioli, A., Gunluk, O., Lavor, C., Liberti, L.: Discretization vertex orders in distance geometry. Discret. Appl. Math. 197, 27–41 (2015)

    Article  MathSciNet  Google Scholar 

  8. Cassioli, A., Bordeaux, B., Bouvier, G., Mucherino, A., Alves, R., Liberti, L., Nilges, M., Lavor, C., Malliavin, T.: An algorithm to enumerate all possible protein conformations verifying a set of distance constraints. BMC Bioinform. 16, 16–23 (2015)

    Article  Google Scholar 

  9. Costa, T., Bouwmeester, H., Lodwick, W., Lavor, C.: Calculating the possible conformations arising from uncertainty in the molecular distance geometry problem using constraint interval analysis. Inf. Sci. 415–416, 41–52 (2017)

    Article  MathSciNet  Google Scholar 

  10. Crippen, G., Havel, T.: Distance Geometry and Molecular Conformation. Wiley, New York (1988)

    MATH  Google Scholar 

  11. Donald, B.: Algorithms in Structural Molecular Biology. MIT Press, Boston (2011)

    Google Scholar 

  12. Dong, Q., Wu, Z.: A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances. J. Glob. Optim. 22, 365–375 (2002)

    Article  MathSciNet  Google Scholar 

  13. Gonçalves, D., Mucherino, A.: Discretization orders and efficient computation of Cartesian coordinates for distance geometry. Optim. Lett. 8, 2111–2125 (2014)

    Article  MathSciNet  Google Scholar 

  14. Lavor, C., Maculan, N.: A function to test methods applied to global minimization of potential energy of molecules. Numer. Algorithms 35, 287–300 (2004)

    Article  MathSciNet  Google Scholar 

  15. Lavor, C.: On generating instances for the molecular distance geometry problem. In: Liberti, L., Maculan, N. (eds.) Global Optimization: From Theory to Implementation, pp. 405–414. Springer, Berlin (2006)

    Chapter  Google Scholar 

  16. Lavor, C.: Analytic evaluation of the gradient and Hessian of molecular potential energy functions. Physica D 227, 135–141 (2007)

    Article  MathSciNet  Google Scholar 

  17. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the discretizable molecular distance geometry problem. Eur. J. Oper. Res. 219, 698–706 (2012)

    Article  MathSciNet  Google Scholar 

  18. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52, 115–146 (2012)

    Article  MathSciNet  Google Scholar 

  19. Lavor, C., Liberti, L., Mucherino, A.: The interval BP algorithm for the discretizable molecular distance geometry problem with interval data. J. Glob. Optim. 56, 855–871 (2013)

    Article  Google Scholar 

  20. Lavor, C., Alves, R., Figueiredo, W., Petraglia, A., Maculan, N.: Clifford algebra and the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebra 25, 925–942 (2015)

    Article  MathSciNet  Google Scholar 

  21. Lavor, C., Liberti, L., Lodwick, W., Mendonça da Costa, T.: An Introduction to Distance Geometry applied to Molecular Geometry, SpringerBriefs. Springer, New York (2017)

    Book  Google Scholar 

  22. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2010)

    Article  MathSciNet  Google Scholar 

  23. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56, 3–69 (2014)

    Article  MathSciNet  Google Scholar 

  24. Liberti, L., Masson, B., Lee, J., Lavor, C., Mucherino, A.: On the number of realizations of certain Henneberg graphs arising in protein conformation. Discret. Appl. Math. 165, 213–232 (2014)

    Article  MathSciNet  Google Scholar 

  25. Liberti, L., Lavor, C.: Six mathematical gems from the history of distance geometry. Int. Trans. Oper. Res. 23, 897–920 (2016)

    Article  MathSciNet  Google Scholar 

  26. Liberti, L., Lavor, C.: Euclidean Distance Geometry: An Introduction. Springer, New York (2017)

    Book  Google Scholar 

  27. Lodwick, W., Dubois, D.: Interval linear systems as a necessary step in fuzzy linear systems. Fuzzy Sets Syst. 274, 227–251 (2015)

    Article  MathSciNet  Google Scholar 

  28. Lodwick, W.: Constrained interval arithmetic, University of Colorado at Denver, CCM Report, 138 (1999)

  29. Lodwick, W.: Interval and fuzzy analysis: an unified approach. In: Hawkes P. (ed.) Advances in Imagining and Electronic Physics, vol. 148, pp. 75–192 (2007)

  30. Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optim. Lett. 6, 1671–1686 (2012)

    Article  MathSciNet  Google Scholar 

  31. Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.): Distance Geometry: Theory, Methods, and Applications. Springer, New York (2013)

    MATH  Google Scholar 

  32. Salles-Neto, L. L., Lavor, C., Lodwick, W.: https://github.com/luizleduino/gdgp

  33. Sit, A., Wu, Z.: Solving a generalized distance geometry problem for protein structure determination. Bull. Math. Biol. 73, 1932–1951 (2011)

    Article  MathSciNet  Google Scholar 

  34. Souza, M., Lavor, C., Muritiba, A., Maculan, N.: Solving the molecular distance geometry problem with inaccurate distance data. BMC Bioinform. 14, S71–S76 (2013)

    Article  Google Scholar 

  35. Voller, Z., Wu, Z.: Distance geometry methods for protein structure determination. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods, and Applications, pp. 139–159. Springer, New York (2013)

    Chapter  Google Scholar 

  36. Wu, D., Wu, Z., Yuan, Y.: Rigid versus unique determination of protein structures with geometric buildup. Optim. Lett. 2, 319–331 (2008)

    Article  MathSciNet  Google Scholar 

  37. Wütrich, K.: Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243, 45–50 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the financial support from FAPESP (Brazil), Grant 2016/21459-0. The second and third authors acknowledge the financial support from FAPESP and CNPq (Brazil). The authors would like to thank the anonymous referees that made very important comments and valuable suggestions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Leduino de Salles Neto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Salles Neto, L.L., Lavor, C. & Lodwick, W. A constrained interval approach to the generalized distance geometry problem. Optim Lett 14, 483–492 (2020). https://doi.org/10.1007/s11590-018-1301-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1301-7

Keywords

Navigation