Skip to main content

Advertisement

Log in

Review of carbon-based nanocomposites as electrocatalyst for H2O2 production from oxygen

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Hydrogen peroxide (H2O2) is an environmentally friendly oxidant used in the chemical industry, sewage treatment, and waste gas purification. There are many ways to produce H2O2 today. In recent years, electrocatalytic technology has received extensive attention from researchers because of its clean and efficient advantages. In the electrocatalytic reaction, the catalyst is the decisive factor affecting the reaction efficiency. Among all kinds of catalysts, carbon materials and their modified material catalysts have attracted broad attention because of their good electrocatalytic performance and low cost. Therefore, this review has discussed the carbon catalysts and summarized their development in recent years. Finally, in line with the trend of environmental protection, this review has briefly discussed and analyzed the application of H2O2 in environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P. N. Yuanyuan Jiang, Chuanxia Chen, Yizhong Lu, Ping Yang, Biao Kong, Adrian Fisher, and Xin Wang (2018) Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Advanced Energy Materials

  2. Y. X. Chuan Xia, Peng Zhu, Lei Fan, Haotian Wang (2019) Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. ELECTROCHEMISTRY

  3. Viswanathan V, Hansen HA, Norskov JK (2015) Selective electrochemical generation of hydrogen peroxide from water oxidation. J Phys Chem Lett 6:4224–4228

    Article  CAS  PubMed  Google Scholar 

  4. R. Noyori, M. Aoki, and K. Sato (2003) Green oxidation with aqueous hydrogen peroxide. Chem Commun (Camb). 1977–86

  5. J. M. Campos-Martin (2006) Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. green chemistry

  6. Schubnikow A (1955) Über die Wirkung von physiologischer Kochsalzlösung und von Saccharoselösung auf die Mortalität nach Körper-Ganzbestrahlungen in Versuchen an Bl-Mäusen. Zeitschrift Für Naturforschung B 10:322–327

    Article  Google Scholar 

  7. Xia C, Back S, Ringe S, Jiang K, Wang H (2020) Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nat Catal 3:1–10

    Article  Google Scholar 

  8. Chen L, Lei C, Li Z, Yang B, Zhang X, Lei L (2018) Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants. Chemosphere 210:516–523

    Article  CAS  PubMed  Google Scholar 

  9. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. Journal of the American Chemical Society. (2018)

  10. Mei D, He ZD, Zheng YL, Jiang DC, Chen YX (2014) Mechanistic and kinetic implications on the ORR on a Au(100) electrode: pH, temperature and H-D kinetic isotope effects. Phys Chem Chem Phys 16:13762–13773

    Article  CAS  PubMed  Google Scholar 

  11. Lu Y, Jiang Y, Gao X, Chen W (2014) Charge state-dependent catalytic activity of [Au25(SC12H25)18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide. Chem Commun 50:8464–8467

    Article  CAS  Google Scholar 

  12. Perry SC (2019) Electrochemical synthesis of hydrogen peroxide from water and oxygen. Electrochemical Engineering Laboratory

  13. Barros WRP, Wei Q, Zhang G, Sun S, Lanza MRV, Tavares AC (2015) Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on Printex carbon and Graphene. Electrochim Acta 162:263–270

    Article  CAS  Google Scholar 

  14. M. P. Ruby Phul , Jahangeer Ahmed, Meryam Sardar, and N. A. Saad M. Alshehri, Mohd A. Majeed Khan and Tokeer Ahmad (2020) Efficient multifunctional catalytic and sensing properties of synthesized ruthenium oxide nanoparticles. catalysts

  15. Liu S, Mase K, Bougher C, Hicks SD, Abu-Omar MM, Fukuzumi S (2014) High-valent chromium-oxo complex acting as an efficient catalyst precursor for selective two-electron reduction of dioxygen by a ferrocene derivative. Inorg Chem 53:7780–7788

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y-L, Li S-S, Yang X-H, Xu G-Y, Zhu Z-C, Chen P, Li S-Q (2019) One minute from pristine carbon to an electrocatalyst for hydrogen peroxide production. Journal of Materials Chemistry A 7:21329–21337

    Article  CAS  Google Scholar 

  17. Wang Y, Waterhouse GIN, Shang L and Zhang T (2020) Electrocatalytic oxygen reduction to hydrogen peroxide: from homogenous to heterogenous electrocatalysis. Advanced Energy Materials

  18. Peng Y, Lu B, Chen S (2018) Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv Mater 30:e1801995

    Article  PubMed  CAS  Google Scholar 

  19. Marcelo C, Marcelo L, Joao G (2008) Rocha, and Poco, H2O2 treated carbon black as electrocatalyst support for polymer electrolyte membrane fuel cell applications. Int J Hydrogen Energy 33:6289–6297

    Article  CAS  Google Scholar 

  20. Chen JY, Nan L, Lin Z (2014) Three-dimensional electrode microbial fuel cell for hydrogen peroxide synthesis coupled to wastewater treatment. J Power Sources 254:316–322

    Article  CAS  Google Scholar 

  21. Rozendal RA, Leone E, Keller J, K. Ra Ba Ey, (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochemistry Communications. 11:1752–1755

    Article  CAS  Google Scholar 

  22. Nan L, An J, Zhou L, Tian L, Xin W (2016) A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems. J Power Sources 306:495–502

    Article  CAS  Google Scholar 

  23. Ding Y, Zhou W, Gao J, Sun F and Zhao G (2021) H2O2 electrogeneration from O2 electroreduction by N-doped carbon materials: a mini-review on preparation methods, selectivity of N sites, and prospects. Advanced Materials Interfaces

  24. Chen S, Chen Z, Siahrostami S, Kim TR and Bao Z (2017) Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustainable Chemistry & Engineering. 6

  25. Lim JS, Kim JH, Woo J, Baek DS, Ihm K, Shin T. J, Sa YJ and Joo SH (2021) Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification. Chem.

  26. Lei Z (2014) Fangke, Yu, Minghua, and Zhou, A novel electro-fenton process with H2O2 generation in a rotating disk reactor for organic pollutant degradation. Environ Sci Technol Lett 1:320–324

    Article  CAS  Google Scholar 

  27. Yamanaka I, Murayama T (2008) Neutral H2O2 synthesis by electrolysis of water and O2. Angew Chem 120:1926–1928

    Article  Google Scholar 

  28. B. E. 131M.2 (1939) A new cathodic process for the production of MO

  29. Yang S, Verdaguer-Casadevall A, Arnarson L, Silvioli L, Čolić V, Frydendal R, Rossmeisl J, Chorkendorff I, Stephens IEL (2018) Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal 8:4064–4081

    Article  CAS  Google Scholar 

  30. Wang Q, Shang L, Shi R, Zhang X, Zhao Y, Waterhouse GIN, Wu LZ, Tung CH, and Zhan T (2017) NiFe layered double hydroxide nanoparticles on Co,N-Codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Advanced Energy Materials

  31. Bagger A, Castelli IE, Hansen MH and Rossmeisl J, Fundamental atomic insight in electrocatalysis

  32. Nørskov JRJK, Logadottir A and Lindqvist L (2003) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 

  33. Siahrostami S, Villegas SJ, Bagherzadeh Mostaghimi AH, Back S, Farimani AB, Wang H, Persson KA, Montoya J (2020) A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide. ACS Catalysis. 10:7495–7511

    Article  CAS  Google Scholar 

  34. Park SY, Abroshan H, Shi X, Jung HS and Zheng X (2018) CaSnO3: an electrocatalyst for 2-electron water oxidation reaction to form H2O2. ACS Energy Letters. 4

  35. Lu Z, Chen G, Siahrostami S, Chen Z and Cui Y  (2018) High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nature Catalysis

  36. Phul R, Perwez M, Ahmed J, Sardar M and Ahmad T (2020) Efficient multifunctional catalytic and sensing properties of synthesized ruthenium oxide nanoparticles. Catalysts. 10

  37. Viswanathan V, Hansen HA, Norskov JK (2015) Selective electrochemical generation of hydrogen peroxide from water oxidation. J Phys Chem Lett 6:4224–4228

    Article  CAS  PubMed  Google Scholar 

  38. Samira, Siahrostami, Arnau, Verdaguer-Casadevall . (2013) Mohammadreza, and Karamad, Enabling direct H2O2 production through rational electrocatalyst design. Nature Materials

  39. Shi X, Siahrostami S, Li G-L, Zhang Y, Chakthranont P, Studt F, Jaramillo TF, Zheng X, Nørskov JK (2017) Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nat Commun 8:701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hu J, Li SS, Li JF, Wang YL, Zhang XY, Chen JB, Li SQ, Gu LN and Chen P (2022) Surface functionalization of polyaniline and excellent electrocatalytic performance for oxygen reduction to produce hydrogen peroxide. Chemical Engineering Journal. 431, 

  41. Liu Y, Quan X, Fan X, Wang H, Chen S (2015) High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew Chem Int Ed Engl 54:6837–6841

    Article  CAS  PubMed  Google Scholar 

  42. Chen S, Chen Z, Siahrostami S, Kim TR, Nordlund D, Sokaras D, Nowak S, To JWF, Higgins D, Sinclair R, Nørskov JK, Jaramillo TF, Bao Z (2017) Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustainable Chemistry & Engineering 6:311–317

    Article  CAS  Google Scholar 

  43. Kim HW, Ross MB, Kornienko N, Zhang L, Guo J, Yang P, McCloskey BD (2018) Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat Catal 1:282–290

    Article  Google Scholar 

  44. Sa YJ, Kim JH, Joo SH (2019) Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production. Angew Chem Int Ed Engl 58:1100–1105

    Article  CAS  PubMed  Google Scholar 

  45. Fellinger TP, Hasché F, Strasser P, Antonietti M (2012) Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J Am Chem Soc 134:4072–4075

    Article  CAS  PubMed  Google Scholar 

  46. Zhao Z, Xia Z (2016) Design principles for dual-element-doped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions. ACS Catal 6:1553–1558

    Article  CAS  Google Scholar 

  47. Zhao K, Yan S, Xie Q, Liu Y, Yu H (2018) Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. J Catal 357:118–126

    Article  CAS  Google Scholar 

  48. Zhao Z, Li M, Zhang L, Dai L, Xia Z (2016) Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries. Adv Mater 27:6834–6840

    Article  CAS  Google Scholar 

  49. Iglesias D (2018) Giuliani, Angela, Melchionna, Michele, Marchesan, Silvia, Criado, and Alejandro, N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. CURRENT FORESTRY REPORTS 4:106–123

    CAS  Google Scholar 

  50. Zhiyi Lu 1 GC S (2018) High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. nature Catalysis

  51. Wei Zhou a, Xiaoxiao Meng a, Jihui Gao a, *, Akram N (2019) Alshawabkeh Hydrogen peroxide generation from O2 electroreduction for environmental remediation: a state-of-the-art review. Chemosphere

  52. Li ZG, Kumar A, Liu N, Cheng M, Zhao C, Meng X, Li H, Zhang Y, Liu Z and Zhang G, Oxygenated P/N co-doped carbon for efficient 2e oxygen reduction to H2O2. Journal of Materials Chemistry A

  53. Zhao Z, Zhang L and Xia Z (2016) Electron transfer and catalytic mechanism of organic molecule-adsorbed graphene nanoribbons as efficient catalysts for oxygen reduction and evolution reactions. Journal of Physical Chemistry C. acs.jpcc.5b09611

  54. Silva A, Antonin VS, Candido EG, Parreira LS, Geonmonond RS, Freitas I, Lanza M, Camargo P and Santos MC (2018) Carbon-supported MnO2 nanoflowers: introducing oxygen vacancies for optimized volcano-type electrocatalytic activities towards H2O2 generation. Electrochimica Acta

  55. Yang S, Zhi L, Tang K, Feng X, Maier J, Muellen K (2012) Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv Func Mater 22:3634–3640

    Article  CAS  Google Scholar 

  56. Tong Y, Wei C, Li Y, Zhang Y, Lin W (2020) Unraveling the mechanisms of S-doped carbon nitride for photocatalytic oxygen reduction to H2O2. Phys Chem Chem Phys 22:21099–21107

    Article  CAS  PubMed  Google Scholar 

  57. Zhao K, Yan S, Xie Q, Liu Y, Yu H (2018) Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. J Catal 357:118–126

    Article  CAS  Google Scholar 

  58. Zhao K, Quan X, Chen S, Yu H, Zhang Y, Zhao H (2018) Enhanced electro-Fenton performance by fluorine-doped porous carbon for removal of organic pollutants in wastewater. Chem Eng J 354:606–615

    Article  CAS  Google Scholar 

  59. Liu Liangxian, Tang Shaobin, Junjing, & Weihua, (2017) Oxygen-molecule adsorption and dissociation on bcn graphene a first-principles study. Chemphyschem A European journal of chemical physics and physical chemistry 18(1):101–110

    Article  PubMed  CAS  Google Scholar 

  60. Daems N, Sheng X, Vankelecom IJ, Pescarmona P (2014) Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A 2:4085–4110

    Article  CAS  Google Scholar 

  61. Iglesias D, Giuliani A, Melchionna M, Marchesan S, Criado A, Nasi L, Bevilacqua M, Tavagnacco C, Vizza F, Prato M, Fornasiero P (2018) N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 4:106–123

    Article  CAS  Google Scholar 

  62. Ren S, Cui W, Li L and Yi Z (2021) N-doped carbon nanotubes as an efficient electrocatalyst for O2 conversion to H2O2 in neutral electrolyte. Sustainable Energy & Fuels. 5

  63. Zhu Y, Qiu S, Ma F, Li G, Deng F and Zheng Y (2018) Corrigendum to "melamine-derived carbon electrode for efficient H2O2 electro-generation" [electrochim. acta 261 375–383]. Electrochimica Acta, 305

  64. Zhu, Zedong, Pan, Honghui, Murugananthan, Muthu, Gong, Jianyu, Zhang, and Yanrong (2018) Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2. Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications

  65. Hu Y, Zhang J, Shen T, Li Z and Wang D (2021) Efficient electrochemical production of H2O2 on hollow N-doped carbon nanospheres with abundant micropores. ACS Applied Materials & Interfaces. 13

  66. Chen Z, Chen S, Siahrostami S, Chakthranont P and Jaramillo TF (2017) Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2. Reaction Chemistry & Engineering. 2

  67. Zhou W, Rajic L, Meng X, Nazari R, Zhao Y, Wang Y, Gao J, Qin Y, Alshawabkeh AN (2019) Efficient H2O2 electrogeneration at graphite felt modified via electrode polarity reversal: utilization for organic pollutants degradation. Chem Eng J 364:428–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yue ZR, Jiang W, Wang L, Gardner SD, Pittman CU (1999) Surface characterization of electrochemically oxidized carbon fibers. Carbon 37:1785–1796

    Article  CAS  Google Scholar 

  69. Jiang J, Yao X, Xu C, Su Y, Zhou L, Deng C (2017) Influence of electrochemical oxidation of carbon fiber on the mechanical properties of carbon fiber/graphene oxide/epoxy composites. Compos A Appl Sci Manuf 95:248–256

    Article  CAS  Google Scholar 

  70. Sun Y, Sinev I, Ju W, Bergmann A, Dresp S, Kühl S et al (2018) Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catalysis 8(4):2844–2856

    Article  CAS  Google Scholar 

  71. Y. S. b. Kun Zhao a, Xie Quan a, Yanming Liu a, Shuo Chen a, Hongtao Y (2017) Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. Journal of Catalysis

  72. T.-P (2012) Fellinger, Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. JACS

  73. K. W. Zhangweihao Pan, Yi Wang, Panagiotis Tsiakaras, Shuqin Song (2018) In-situ electrosynthesis of hydrogen peroxide and wastewater treatment application: a novel strategy for graphite felt activation. Applied Catalysis B: Environmental

  74. F. H. Yiran Yang, Yanfei Shen, Xinghua Chen, Hao Mei, Songqin Liu, and Yuanjian Zhang* (2013) Biomass derived N/C-catalyst for electrochemical production of hydrogen peroxide. Journal Name

  75. Effects of N mono- and N/P dual-doping on H2O2, OH generation, and MB electrochemical degradation efficiency of activated carbon fiber electrodes. CHEMOSPHERE -OXFORD-.(2018)

  76. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. Journal of the American Chemical Society. 140, 7851–7859 (2018)

  77. Asefa T (2016) Metal-free and noble metal-free heteroatom-doped nanostructured carbons as prospective sustainable electrocatalysts. Acc Chem Res 49:1873–1883

    Article  CAS  PubMed  Google Scholar 

  78. Nie Y, Li L, Wei Z (2015) Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44:2168–2201

    Article  CAS  PubMed  Google Scholar 

  79. Jaouen F, Proietti E, Lefevre M, Chenitz R, Zelenay P (2010) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130

    Article  Google Scholar 

  80. Carneiro JF, Paulo MJ, Siaj M, Tavares AC, Lanza MRV (2015) Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration. J Catal 332:51–61

    Article  CAS  Google Scholar 

  81. Pinheiro VS, Paz EC, Aveiro LR, Parreira LS, Souza FM, Camargo PHC, Santos MC (2018) Ceria High aspect ratio nanostructures supported on carbon for hydrogen peroxide electrogeneration. Electrochim Acta 259:865–872

    Article  CAS  Google Scholar 

  82. Carneiro JF, Rocha RS, Hammer P, Bertazzoli R, Lanza MRV (2016) Hydrogen peroxide electrogeneration in gas diffusion electrode nanostructured with Ta2O5. Appl Catal A 517:161–167

    Article  CAS  Google Scholar 

  83. L. R. Aveiro (2018) Carbon-supported MnO2 nanoflowers: introducing oxygen vacancies for optimized volcano-type electrocatalytic activities towards H2O2 generation. Electrochimica Acta.

  84. Assumpção MHMT, Moraes A, De Souza RFB, Gaubeur I, Oliveira RTS, Antonin VS, Malpass GRP, Rocha RS, Calegaro ML, Lanza MRV, Santos MC (2012) Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis. Appl Catal A 411–412:1–6

    Article  CAS  Google Scholar 

  85. Carneiro JF, Trevelin LC, Lima AS, Meloni GN, Bertotti M, Hammer P, Bertazzoli R, Lanza MRV (2017) Synthesis and characterization of ZrO2/C as electrocatalyst for oxygen reduction to H2O2. Electrocatalysis 8:189–195

    Article  CAS  Google Scholar 

  86. Paz EC, Aveiro LR, Pinheiro VS, Souza FM, Lima VB, Silva FL, Hammer P, Lanza MRV, Santos MC (2018) Evaluation of H2O2 electrogeneration and decolorization of Orange II azo dye using tungsten oxide nanoparticle-modified carbon. Appl Catal B 232:436–445

    Article  CAS  Google Scholar 

  87. Moraes A, Assumpção MHMT, Papai R, Gaubeur I, Rocha RS, Reis RM, Calegaro ML, Lanza MRV, Santos MC (2014) Use of a vanadium nanostructured material for hydrogen peroxide electrogeneration. J Electroanal Chem 719:127–132

    Article  CAS  Google Scholar 

  88. Yang J, Li J, Ding R, Liu C, Yin X (2021) Kinetic effects of temperature on Fe-N-C catalysts for 2e- and 4e-oxygen reduction reactions. Journal of The Electrochemical Society. 168:096502

    Article  CAS  Google Scholar 

  89. Chen XZ (2010) Study on oily sewage treatment by Fenton oxidation. Environmental Protection Science

  90. Pignatello JJ, Oliveros E, Mackay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84

    Article  CAS  Google Scholar 

  91. Bokare AD, Choi W (2014) Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater 275:121–135

    Article  CAS  PubMed  Google Scholar 

  92. Ji J, Huang H, Xie R, Feng Q, Shu Y, Zhan Y, Fang R, He M and Liu S (2017) UV/H2O2: an efficient aqueous advanced oxidation process for VOCs removal. Chemical Engineering Journal.

  93. J. W. A. B. C , and S. W. A. B (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants - ScienceDirect. Chemical Engineering Journal. 334, 1502-1517

  94. Anfruns A, García-Suárez E, Montes-Morán M, Gonzalez-Olmos R, Martin MJ (2014) New insights into the influence of activated carbon surface oxygen groups on H2O2 decomposition and oxidation of pre-adsorbed volatile organic compounds. Carbon 77:89–98

    Article  CAS  Google Scholar 

  95. Brillas E, Mur E, Casado J (1996) Iron(II) catalysis of the mineralization of aniline using a carbon- PTFE O2-fed cathode. J Electrochem Soc 143:14–18

    Article  Google Scholar 

  96. Oturan MA, Peiroten J, Chartrin P, Acher AJ (2000) Complete destruction OFP-nitrophenol in aqueous medium by electro-Fenton method. Environ Sci Technol 34:3474–3479

    Article  CAS  Google Scholar 

  97. Li K, Liu J, Li J, Wan Z (2017) Effects of N mono- and N/P dual-doping on H2O2, OH generation, and MB electrochemical degradation efficiency of activated carbon fiber electrodes. Chemosphere 193:800

    Article  PubMed  CAS  Google Scholar 

  98. Xu Y, Cao L, Sun W, Yang J (2016) In-situ catalytic oxidation of Hg0 via a gas diffusion electrode. Chem Eng J 310:170–178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Key projects of Anhui Province University Outstanding Youth Talent Support Program (gxyq1028111).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Chen or Jiangfeng Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Dong, Z., Chen, R. et al. Review of carbon-based nanocomposites as electrocatalyst for H2O2 production from oxygen. Ionics 28, 4045–4063 (2022). https://doi.org/10.1007/s11581-022-04690-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04690-5

Keywords

Navigation