Skip to main content

Advertisement

Log in

Rational construction of Na0.44MnO2 nanorods and PAN nanofibers composite as high areal capacity sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The electrode materials are traditionally loaded on the surface of the metal current collector by using of roll coating methods in sodium-ion batteries (SIBs). However, with the increase of the mass loading, the sodium storage performance of the cathodes deteriorates dramatically in the traditional casting process. In this work, we propose a novel strategy by applying electrospinning and airbrush-spraying technique to fabricate Na0.44MnO2-based paper (NMO-BP) electrodes. The results indicate that the NMO-BP electrodes show good electrochemical performance in terms of high areal capacities and good cycling stability with the loaded Na0.44MnO2 active material increasing from 2.6 to 10.4 mg cm−2. A high areal capacities of 1.10 mAh cm−2 is obtained in the NMO-BP electrodes with high areal loading (> 10 mg cm−2) for SIBs. This research provides a new method to explore cathode materials for sodium-ion battery with higher areal capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    Article  CAS  Google Scholar 

  2. Qi SH, Wang HP, He J, Liu JD, Cui CY, Wu MG, Li F, Feng YZ, Ma JM (2020) Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries. Sci Bull. https://doi.org/10.1016/j.scib.2020.09.018

  3. Ding SS, Zhou BX, Chen CM, Huang Z, Li PC, Wang SY, Cao GZ, Zhang M (2020) Sulfur-rich (NH4)2Mo3S13 as a highly reversible anode for sodium/potassium-ion batteries. ACS Nano 14:9626–9636

  4. Gao Q, Li PC, Ding SS, He HC, Cai MQ, Ning XT, Cai Y, Zhang M (2020) Cu2Se-ZnSe heterojunction encapsulated in carbon fibers for high-capacity anodes of sodium-ion batteries. Ionics. 26:5525–5533

    Article  CAS  Google Scholar 

  5. Liu B, Lei DN, Wang J, Zhang QF, Zhang YG, He W, Zheng HF, Sa BS, Xie QS, Peng DL, Qu BH (2020) 3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode. Nano Res 13(8):2136–2142

    Article  CAS  Google Scholar 

  6. Fan TE, Xie HF (2019) Sb2S3-rGO for high-performance sodium-ion battery anodes on Al and Cu foil current collector. J Alloys Compd 775:549–553

    Article  CAS  Google Scholar 

  7. Cao YL, Xiao L, Wang W, Choi D, Nie Z, Yu J, Saraf LV, Yang Z, Liu J (2011) Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 23:3155–3160

    Article  CAS  Google Scholar 

  8. Hosono E, Saito T, Hoshino J, Okubo M, Saito Y, Nishio-Hamane D, Kudo T, Zhou H (2012) High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode. J Power Sources 217:43–46

    Article  CAS  Google Scholar 

  9. Ju XK, Huang H, Zheng HF, Deng P, Li SY, Qu BH, Wang TH (2018) A facile method to hunt for durable high-rate capability Na0.44MnO2. J Power Sources 395:395–402

    Article  CAS  Google Scholar 

  10. Qiao R, Dai K, Mao J, Weng T, Sokarase D, Nordlunde D, Song X, Battagliac VS, Hussaina Z, Liu G, Yang W (2015) Revealing and suppressing surface Mn(II) formation of Na0.44MnO2 electrodes for Na-ion batteries. Nano Energy 16:186–195

    Article  CAS  Google Scholar 

  11. Dai K, Mao J, Song X, Battaglia V, Liu G (2015) Na0.44MnO2 with very fast sodium diffusion and stable cycling synthesized via polyvinylpyrrolidone-combustion method. J Power Sources 285:161–168

    Article  CAS  Google Scholar 

  12. Zhan P, Wang S, Yuan Y, Jiao K, Jiao S (2015) Facile synthesis of nanorod-like single crystalline Na0.44MnO2 for high performance sodium-ion batteries. J Electrochem Soc 162:A1028–A1032

    Article  CAS  Google Scholar 

  13. Demire S, Oz E, Altin E, Altin S, Bayri A, Kaya P, Turan S, Avci S (2015) Growth mechanism and magnetic and electrochemical properties of Na0.44MnO2 nanorods as cathode material for Na-ion batteries. Mater Charact 105:104–112

    Article  Google Scholar 

  14. Park J, Park K, Kim R, Yun D, Park S, Han D, Lee S, Park J (2015) Improving the kinetics and surface stability of sodium manganese oxide cathode materials for sodium rechargeable batteries with Al2O3/MWCNT hybrid networks. J Mater Chem A 3:10730–10737

    Article  CAS  Google Scholar 

  15. Ma G, Zhao Y, Huang K, Ju Z, Liu C, Hou Y, Xing Z (2016) Effects of the starting materials of Na0.44MnO2 cathode materials on their electrochemical properties for Na-ion batteries. Electrochim Acta 222:36–43

    Article  CAS  Google Scholar 

  16. Fu B, Zhou X, Wang Y (2016) High-rate performance electrospun Na0.44MnO2 nanofibers as cathode material for sodium-ion batteries. J Power Sources 310:102–108

    Article  CAS  Google Scholar 

  17. He X, Wang J, Qiu B, Paillard E, Ma C, Cao X, Liu H, Stan M, Liu H, Gallash T, Meng YS, Li J (2016) Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries. Nano Energy 27:602–610

    Article  CAS  Google Scholar 

  18. Dall’Asta V, Buchholz D, Chagas LG, Dou X, Ferrara C, Quartarone E, Tealdi C, Passerini S (2017) Aqueous processing of Na0.44MnO2 cathode material for the development of greener Na-ion batteries. ACS Appl Mater Interfaces 9:34891–34899

    Article  Google Scholar 

  19. Liu Q, Hu Z, Chen M, Gu Q, Dou Y, Sun Z, Chou S, Dou SX (2017) Multiangular rod-shaped Na0.44MnO2 as cathode materials with high rate and long life for sodium-ion batteries. ACS Appl Mater Interfaces 9:3644–3652

    Article  CAS  Google Scholar 

  20. Chen Z, Yuan T, Pu X, Yang H, Ai X, Xia Y (2018) Symmetric sodium-ion capacitor based on Na0.44MnO2 nanorods for low-cost and high-performance energy storage. ACS Appl Mater Interfaces 10:11689–11698

    Article  CAS  Google Scholar 

  21. Shi WJ, Yan YW, Chi C, Ma XT, Zhang D, Xu SD, Chen L, Wang XM, Liu SB (2019) Fluorine anion doped Na0.44MnO2 with layer-tunnel hybrid structure as advanced cathode for sodium ion batteries. Electrochim Acta 427:129–137

    CAS  Google Scholar 

  22. Li F, He J, Liu JD, Wu MG, Hou YY, Wang HP, Qi SH, Liu QH, Hu JW, Ma JM, Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries, Angew Chem, 2020; doi. https://doi.org/10.1002/ange.202013993

  23. Zhang QF, Qiao ZS, Cao XR, Qu BH, Yuan J, Fan TE, Zheng HF, Cui JQ, Wu SQ, Xie QS, Peng DL (2020) Rational integration of spatial confinement and polysulfide conversion catalysts for high sulfur loading lithium-sulfur batteries. Nano Horiz 5:720–729

    Article  CAS  Google Scholar 

  24. Cui C, Wei ZX, Zhou G, Wei WF, Ma JM, Chen LB, Li CC (2018) Quasi-reversible conversion reaction of CoSe2/nitrogen-doped carbon nanofibers towards long-lifetime anode materials for sodium-ion batteries. J Mater Chem A 6:7088–7098

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (Grant. No. 51901031), the student research training plan in the year of 2020 (A2020-130), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201900623), and the Doctoral Start-Up Fund (Grant No. A2019-05) of Chongqing University of Posts and Telecommunications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-E. Fan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, TE., Liu, SM., Tang, X. et al. Rational construction of Na0.44MnO2 nanorods and PAN nanofibers composite as high areal capacity sodium-ion batteries. Ionics 27, 1137–1142 (2021). https://doi.org/10.1007/s11581-021-03910-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03910-8

Keywords

Navigation