Skip to main content

Advertisement

Log in

One-step electrodeposition fabrication of iron cobalt sulfide nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, a non-polluting and simple electrodeposition strategy is presented by us for fabricating ternary iron cobalt transition metal sulfide (FeCoS) on Ni foam with nanosheet arrays, which are used as cathode materials for asymmetric supercapacitors. The FeCoS-15 nanosheet arrays reveal an admirable specific capacitance of 3741.03 F g−1 when the current density is 1 A g−1 and also exhibit a fantastic cycling performance with 92.84% capacitance retention at 20 A g−1 up to 10,000 cycles. Furthermore, the asymmetric supercapacitors using the FeCoS-15 nanosheet arrays as the positive electrode and the activated carbon (AC) as the negative electrodes demonstrate remarkable electrochemical performance. Our device exhibits an energy density of 54.08 Wh kg−1 with the power density of 800 W kg−1, achieving an impressive cycling retention of 85.64% over 10,000 cycles. The excellent results show that FeCoS nanosheet array materials have a roomy application prospect for high-performance asymmetric supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen W, Xia C, Alshareef HN (2014) One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 8:9531–9541

    Article  CAS  PubMed  Google Scholar 

  2. Liu Y, Zhou Z, Zhang S, Luo W, Zhang G (2018) Controllable synthesis of CuS hollow microflowers hierarchical structures for asymmetric supercapacitors. Appl Surf Sci 442:711–719

    Article  CAS  Google Scholar 

  3. Liu L, Yin X, Li Y, Wang H, Guo G, Wan J (2018) Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv Mater 30:1706216

    Article  CAS  Google Scholar 

  4. Meng Y, Sun P, He W, Teng B, Xu X (2019) Construction of hierarchical Co-Ni-S nanosheets as free-standing electrode for superior-performance asymmetric supercapacitors. Appl Surf Sci 470:792–799

    Article  CAS  Google Scholar 

  5. Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872

    Article  CAS  PubMed  Google Scholar 

  6. He X, Li R, Liu J, Liu Q, Chen R, Song D, Wang J (2018) Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chem Eng J 334:1573–1583

    Article  CAS  Google Scholar 

  7. Xu G, Zhang Z, Qi X, Ren X, Liu S, Chen Q, Huang Z, Zhong J (2018) Hydrothermally synthesized FeCo2O4 nanostructures: structural manipulation for high-performance all solid-state supercapacitors. Ceram Int 44:120–127

    Article  CAS  Google Scholar 

  8. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou X, Recent W (2012) Advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180

    Article  CAS  PubMed  Google Scholar 

  9. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  10. Chen W, Rakhi RB, Wang Q, Hedhili MN, Alshareef HN (2014) Morphological and electrochemical cycling effects in MnO2 nanostructures by 3D electron tomography. Adv Funct Mater 24:3130–3143

    Article  CAS  Google Scholar 

  11. Xu L, Zhao Y, Lian J, Xu Y, Bao J, Qiu J, Xu L, Xu H, Hua M, Li H (2017) Morphology controlled preparation of ZnCo2O4 nanostructures for asymmetric supercapacitor with ultrahigh energy density. Energy 123:296–304

    Article  CAS  Google Scholar 

  12. Cai P, Liu T, Zhang L, Cheng B, Yu J (2019) ZIF-67 derived nickel cobalt sulfide hollow cages for high-performance supercapacitors. Appl Surf Sci 504:14450

  13. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    Article  CAS  Google Scholar 

  14. Liu S, Hui K, Hui K, Yun J, Kim K (2016) Vertically stacked bilayer CuCo2O4/MnCo2O4 heterostructures on functionalized graphite paper for high-performance electrochemical capacitors. J Mater Chem A 4:8061–8071

    Article  CAS  Google Scholar 

  15. Wang Y, Ma X, Li S, Sun J, Zhang Y, Chen H, Xu C (2020) Facile solvothermal synthesis of novel MgCo2O4 twinned-hemispheres for high performance asymmetric supercapacitors. J Alloys Compd 818:152905

  16. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxidebased materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  CAS  PubMed  Google Scholar 

  17. Yang J, Zhang Y, Sun C, Guo G, Sun W, Huang W, Yan Q, Dong X (2015) Controlled synthesis of zinc cobalt sulfide nanostructures in oil phase and their potential applications in electrochemical energy storage. J Mater Chem A 3:11462–11470

    Article  CAS  Google Scholar 

  18. Xiong X, Waller G, Ding D, Chen D, Rainwater B, Zhao B, Wang Z, Liu M (2015) Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 16:71–80

    Article  CAS  Google Scholar 

  19. Pu J, Wang T, Wang H, Tong Y, Lu C, Kong W, Wang Z (2014) Direct growth of NiCo2S4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors. Chem Plus Chem 79:577–583

    CAS  PubMed  Google Scholar 

  20. Chou S, Lin J (2013) Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for high-performance supercapacitors. J Electrochem Soc 160:D178–D182

    Article  CAS  Google Scholar 

  21. Tang J, Ge Y, Shen J, Ye M (2016) Facile synthesis of CuCo2S4 as a novel electrode material for ultrahigh supercapacitor performance. Chem Commun 52(7):1509–1512

  22. Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high performance pseudocapacitors. Nano Lett 14:831–838

    Article  CAS  PubMed  Google Scholar 

  23. Yang Z, Chen C, Chang H (2011) Supercapacitors incorporating hollow cobalt sulfide hexagonal nanosheets. J Power Sources 196:7874–7877

    Article  CAS  Google Scholar 

  24. Yang J, Duan X, Qin Q, Zheng W (2013) Solvothermal synthesis of hierarchical flower-like beta-NiS with excellent electrochemical performance for supercapacitors. J Mater Chem A 1:7880–7884

    Article  CAS  Google Scholar 

  25. Zhu T, Xia B, Zhou L, WenLou X (2012) Arrays of ultrafine CuS nanoneedles supported on a CNT backbone for application in supercapacitors. J Mater Chem 22:7851–7855

    Article  CAS  Google Scholar 

  26. Liu Q, Jin J, Zhang J (2013) NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 5:5002–5008

    Article  CAS  PubMed  Google Scholar 

  27. Xiao J, Zeng X, Chen W, Xiao F, Wang S (2013) High electrocatalytic activity of self-standing hollow NiCo2S4 single crystalline nanorod arrays towards sulfide redox shuttles in quantum dot-sensitized solar cells. Chem Commun 49:11734–11736

    Article  CAS  Google Scholar 

  28. Mohamed SG, Chen C, Chen C, Hu S, Liu R (2014) High-performance lithium-ion battery and symmetric supercapacitors based on FeCo2O4 nanoflakes electrodes. ACS Appl Mater Interfaces 6:22701–22708

    Article  CAS  PubMed  Google Scholar 

  29. Zhu J, Tang S, Wu J, Shi X, Zhu B, Meng X (2017) Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4-NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes. Adv Energy Mater 7:1601234–1601244

    Article  CAS  Google Scholar 

  30. Huang Y, Cui F, Hua M, Xu L, Zhao Y, Lian J, Bao J, Li H (2018) Hierarchical FeCo2S4 nanotubes arrays deposited on 3D carbon foam as novel binder-free electrodes for high-performance asymmetric pseudocapacitors. Chem Asian J 13:3212–3221

    Article  CAS  PubMed  Google Scholar 

  31. Huang Y, Zhao Y, Bao J, Lian J, Cheng M, Li H (2019) Lawn-like FeCo2S4 hollow nanoneedle arrays on flexible carbon nanofiber film as binder-free electrodes for high-performance asymmetric pseudocapacitors. J Alloys Compd 772:337–347

    Article  CAS  Google Scholar 

  32. Yan S, Luo S, Feng J, Li P, Guo R, Wang Q, Zhang Y, Liu Y, Bao S (2019) Rational design of flower-like FeCo2S4/reduced graphene oxide films: novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor. Chem Eng J 381:1385–8947

    Google Scholar 

  33. Gao H, Wang X, Wang G, Hao C, Huang C, Jiang C (2019) Facile construction of a MgCo2O4@NiMoO4/NF core–shell nanocomposite for high-performance asymmetric supercapacitors. J Mater Chem C 42:13267–13278

    Article  Google Scholar 

  34. Cao X, Jia D, Li D, Cui L (2018) J. Liu, one-step co-electrodeposition of hierarchical radial NixP nanospheres on Ni foam as highly active flexible electrodes for hydrogen evolution reaction and supercapacitor. Chem Eng J 348:310–318

    Article  CAS  Google Scholar 

  35. Yan J, Fan Z, Wei S, Ning G, Tong W, Qiang Z, Zhang R, Zhi L, Fei W (2012) Advanced aymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641

    Article  CAS  Google Scholar 

  36. Zhang Y, Ma M, Yang J, Sun C, Su H, Huang W, Dong X (2014) Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors. Nanoscale 6:9824–9830

    Article  CAS  PubMed  Google Scholar 

  37. Lu C, Huang Y, Wu Y, Li J, Cheng J (2018) Camellia pollen-derived carbon for supercapacitor electrode material. J Power Sources 394:9–16

    Article  CAS  Google Scholar 

  38. Zha D, Fu Y, Zhang L, Zhu J, Wang X (2018) Design and fabrication of highly open nickel cobalt sulfide nanosheets on Ni foam for asymmetric supercapacitors with high energy density and long cycle-life. J Power Sources 378:31–39

    Article  CAS  Google Scholar 

  39. Hu J, Ou Y, Li Y, Gao D, Zhang Y, Xiao P (2018) FeCo2S4 nanosheet arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for overall water-splitting. ACS Sustain Chem Eng 6:11724–11733

    Article  CAS  Google Scholar 

  40. Hu W, Chen R, Xie W, Zou L, Qin N, Bao D (2014) CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric aupercapacitor applications. ACS Appl Mater Interfaces 6:19318–19326

    Article  CAS  PubMed  Google Scholar 

  41. Huang L, Chen D, Ding Y, Feng S, Wang Z, Liu M (2013) Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13:3135–3139

    Article  CAS  PubMed  Google Scholar 

  42. Mohamed SG, Attia SY, Hassan HH (2017) Spinel-structured FeCo2O4 mesoporous nanosheets as efficient electrode for supercapacitor applications. Microporous Mesoporous Mater 251:26–33

    Article  CAS  Google Scholar 

  43. Wang J, Jin D, Zhou R, Shen C, Xie K, Wei B (2016) One step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. J Power Sources 306:100–106

    Article  CAS  Google Scholar 

  44. Tiruneh SN, Kang BK, Kwag SH, Lee YH, Kim MS, Yoon DH (2018) Synergistically active NiCo2S4 nanoparticles coupled with holey defect graphene hydrogel for high-performance solid-state supercapacitors. Chem Eur J 24:3263–3270

    Article  CAS  PubMed  Google Scholar 

  45. Jiang J, Sun Y, Chen Y, Hu X, Zhu L, Chen H, Han S (2019) One-step synthesis of nickel cobalt sulfide nanostructure for high-performance supercapacitor. J Mater Sci 54:11936–11950

    Article  CAS  Google Scholar 

  46. Cui Y, Zhang J, Jin C, Liu Y, Luo W, Zheng W (2019) Ionic liquid-controlled growth of NiCo2S4 3D hierarchical hollow nanoarrow arrays on Ni foam for superior performance binder free hybrid supercapacitors. Small 15:1804318

    Google Scholar 

  47. Shen L, Wang J, Xu G, Li H, Dou H, Zhang X (2015) NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv Energy Mater 5:1400977

    Article  CAS  Google Scholar 

  48. Fan L, Pan F, Tu Q, Gu Y, Huang J, Huang Y, Wu J (2018) Synthesis of CuCo2S4 nanosheet arrays on Ni foam as binder-free electrode for asymmetric supercapacitor. ScienceDirect 43:23372–23381

    CAS  Google Scholar 

  49. Chang X, Li W, Liu Y, He M, Zheng X, Bai J, Ren Z (2019) Hierarchical NiCo2S4@NiCoP core-shell nanocolumn arrays on nickel foam as a binder-free supercapacitor electrode with enhanced electrochemical performance. J Colloid Interface Sci 538:34–44

    Article  CAS  PubMed  Google Scholar 

  50. Xu X, Tian X, Li X, Yang T, He Y, Wang K, Song Y, Liu Z (2019) Structural and chemical synergistic effect of NiCo2S4 nanoparticles and carbon cloth for high performance binder-free asymmetric supercapacitors. Appl Surf Sci 465:635–642

    Article  CAS  Google Scholar 

  51. Hou L, Bao R, Chen Z, Rehan M, Tong L, Pang G, Yuan C (2016) Comparative investigation of hollow mesoporous NiCo2S4 ellipsoids with enhanced pseudo-capacitances towards high-performance asymmetric supercapacitors. Electrochim Acta 214:76–84

    Article  CAS  Google Scholar 

  52. Cao L, Tang G, Mei J, Liu H (2017) Construct hierarchical electrode with NixCo3-xS4 nanosheet coated on NiCo2O4 nanowire arrays grown on carbon fiber paper for high-performance asymmetric supercapacitors. J Power Sources 359:262–269

    Article  CAS  Google Scholar 

  53. Xiao T, Li J, Zhuang X, Zhang W, Wang S, Chen X, Xiang P, Jiang L, Tan X (2018) Wide potential window and high specific capacitance triggered via rough NiCo2S4 nanorod arrays with open top for symmetric supercapacitors. Electrochim Acta 269:397–404

    Article  CAS  Google Scholar 

  54. Zheng Y, Xua J, Yang X, Zhang Y, Shang Y, Hu X (2018) Decoration NiCo2S4 nanoflakes onto Ppy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor. Chem Eng J 333:111–121

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported from the Science and Technology Commission of Shanghai Municipality Project (Project Number 18090503800), Shanghai Natural Science Foundation of Shanghai (Project Number 17ZR1441700 and 14ZR1440500), and Shanghai Association for Science and Technology Achievements Transformation Alliance Program (Project Number LM201851).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jibo Jiang or Sheng Han.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1040 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Liu, S., Chen, Y. et al. One-step electrodeposition fabrication of iron cobalt sulfide nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors. Ionics 26, 2095–2106 (2020). https://doi.org/10.1007/s11581-020-03508-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03508-6

Keywords

Navigation