Skip to main content

Advertisement

Log in

String-like core-shell ZnCo2O4@NiWO4 nanowire/nanosheet arrays on Ni foam for binder-free supercapacitor electrodes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We report the synthesis of 3D, string-like, core-shell, heterostructured ZnCo2O4@NiWO4 nanowire/nanosheet arrays on nickel foam using a simple two-step hydrothermal method followed by an annealing process, without the needs of conventional electrode preparation. The direct growth of ZnCo2O4 nanowires serves both as core and mains active materials for charge storage with high mechanical stability, while the higher conductive NiWO4 nanosheets act as the shell, which could provide enough voids for electrolyte accommodation and facilitate charge transfer and storage. When working as a binder-free electrode, the as-synthesized ZnCo2O4@NiWO4 nanowire/nanosheet arrays electrode delivers a specific capacitance as high as 1782 F g−1 (2.14 F cm−2) at a current density of 1 mA cm−2 and retains 95.4% of original capacitance after 5000 cycles at 5 A cm−2, compared with single ZnCo2O4 nanowires electrode with 1300 F g−1 (1.04 F cm−2) and 90.9%. The excellent capacitance performance demonstrates that constructing 3D, heterostructured, core-shell, nanowire/nanosheet arrays with two different binary transition metal oxides holds great potential for high-performance supercapacitors due to the synergic effects and large specific surface area.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao J, Li Y, Wang G, Wei T, Liu Z, Cheng K, Ye K, Zhu K, Cao D, Fan Z (2017) Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. J Mater Chem A 44:23085–23093

    Article  Google Scholar 

  2. Singh SB, Singh TI, Kim NH, Lee JH (2019) A core–shell MnO2@Au nanofiber network as a high-performance flexible transparent supercapacitor electrode. J Mater Chem A 17:10672–10683

    Article  Google Scholar 

  3. Wu D, Zhong W (2019) A new strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high areal-capacitance supercapacitors. J Mater Chem A 10:5819–5830

    Article  Google Scholar 

  4. Wu C, Cai J, Zhu Y, Zhang K (2017) Hybrid reduced graphene oxide nanosheet supported Mn-Ni-Co ternary oxides for aqueous asymmetric supercapacitors. ACS Appl Mater Interfaces 22:19114–19123

    Article  Google Scholar 

  5. Cheng J, Lu Y, Qiu K, Yan H, Xu J, Han L, Liu X, Luo J, Kim JK, Luo Y (2015) Hierarchical core/shell NiCo2O4@NiCo2O4 nanocactus arrays with dual-functionalities for high performance supercapacitors and Li-ion batteries. Sci Rep, 12099

  6. Liu B, Liu B, Wang Q, Wang X, Xiang Q, Chen D, Shen G (2013) New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. ACS Appl Mater Interfaces 20:10011–10017

    Article  Google Scholar 

  7. Reddy AE, Anitha T, Muralee Gopi CVV, Srinivasa Rao S, Kim HJ (2018) NiMoO4@NiWO4 honeycombs as a high performance electrode material for supercapacitor applications. Dalton Trans 27:9057–9063

    Article  Google Scholar 

  8. Wang, J.; Zhang, L.; Liu, X.; Zhang, X.; Tian, Y.; Liu, X.; Zhao, J.; Li, Y. (2017) Assembly of flexible CoMoO4@NiMoO4·xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors. Sci Rep, 41088

  9. Gu Z, Zhang X (2016) NiCo2O4@MnMoO4 core–shell flowers for high performance supercapacitors. J Mater Chem A 21:8249–8254

    Article  Google Scholar 

  10. Wang R, Wu S, Lv Y, Lin Z (2014) Partially crystalline Zn2GeO4 nanorod/graphene composites as anode materials for high performance lithium ion batteries. Langmuir 27:8215–8220

    Article  Google Scholar 

  11. Xu J, Sun Y, Lu M, Wang L, Zhang J, Tao E, Qian J, Liu X (2018) Fabrication of the porous MnCo2O4 nanorod arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Acta Mater 162-174

  12. Wang S, Pu J, Tong Y, Cheng Y, Gao Y, Wang Z (2014) ZnCo2O4 nanowire arrays grown on nickel foam for high-performance pseudocapacitors. J Mater Chem A 15:5434–5440

    Article  Google Scholar 

  13. Bao F, Wang X, Zhao X, Wang Y, Ji Y, Zhang H, Liu X (2014) Controlled growth of mesoporous ZnCo2O4 nanosheet arrays on Ni foam as high-rate electrodes for supercapacitors. RSC Adv 5:2393–2397

    Article  Google Scholar 

  14. Wu H, Lou Z, Yang H, Shen G (2015) A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes. Nanoscale 5:1921–1926

    Article  Google Scholar 

  15. Zhong S, Zhang H, Fu J, Shi H, Wang L, Zeng W, Liu Q, Zhang G, Duan H (2018) In-situ synthesis of 3D carbon coated zinc-cobalt bimetallic oxide networks as anode in lithium-ion batteries. ChemElectroChem 13:1708–1716

    Article  Google Scholar 

  16. Wang Q, Zhu L, Sun L, Liu Y, Jiao L (2015) Facile synthesis of hierarchical porous ZnCo2O4 microspheres for high-performance supercapacitors. J Mater Chem A 3:982–985

    Article  CAS  Google Scholar 

  17. Zhao J, Li C, Zhang Q, Zhang J, Wang X, Lin Z, Wang J, Lv W, Lu C, Wong C-p, Yao Y (2017) An all-solid-state, lightweight, and flexible asymmetric supercapacitor based on cabbage-like ZnCo2O4 and porous VN nanowires electrode materials. J Mater Chem A 15:6928–6936

    Article  Google Scholar 

  18. Venkatachalam V, Alsalme A, Alswieleh A, Jayavel R (2017) Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications. Chem Eng J 474-483

  19. Liu T, Wang W, Yi M, Chen Q, Xu C, Cai D, Zhan H (2018) Metal-organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder-free electrodes for lithium-ion batteries. Chem Eng J 454-462

  20. Mary AJC; Bose AC (2017) Facile synthesis of ZnCo2O4/rGO nanocomposite for effective supercapacitor application. 050093

  21. Sahoo S, Shim J-J (2016) Facile synthesis of three-dimensional ternary ZnCo2O4/reduced graphene oxide/NiO composite film on nickel foam for next generation supercapacitor electrodes. ACS Sustain Chem Eng 1:241–251

    Google Scholar 

  22. Ru Q, Song X, Mo Y, Guo L, Hu S (2016) Carbon nanotubes modified for ZnCo2O4 with a novel porous polyhedral structure as anodes for lithium ion batteries with improved performances. J Alloys Compd 586-592

  23. Sun Z, Ai W, Liu J, Qi X, Wang Y, Zhu J, Zhang H, Yu T (2014) Facile fabrication of hierarchical ZnCo2O4/NiO core/shell nanowire arrays with improved lithium-ion battery performance. Nanoscale 12:6563–6568

    Article  Google Scholar 

  24. Fu W, Wang Y, Han W, Zhang Z, Zha H, Xie E (2016) Construction of hierarchical ZnCo2O4@NixCo2x(OH)6x core/shell nanowire arrays for high-performance supercapacitors. J Mater Chem A 1:173–182

    Article  Google Scholar 

  25. Chen S, Zhang Z, Zeng W, Chen J, Deng L (2019) Construction of NiCo2S4@NiMoO4 core-shell nanosheet arrays with superior electrochemical performance for asymmetric supercapacitors. ChemElectroChem 2:590–597

    Article  Google Scholar 

  26. Chen S; Chandrasekaran S; Cui S; Li Z; Deng G; Deng L (2019) Self-supported NiMoO4@CoMoO4 core/sheath nanowires on conductive substrates for all-solid-state asymmetric supercapacitors. J Electroanal Chem, 113153

  27. Xu J, Sun Y, Lu M, Wang L, Zhang J, Qian J, Liu X (2018) Fabrication of hierarchical MnMoO4·H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Chem Eng J 1466-1476

  28. Chen S, Yang G, Jia Y, Zheng H (2017) Three-dimensional NiCo2O4@NiWO4 core–shell nanowire arrays for high performance supercapacitors. J Mater Chem A 3:1028–1034

    Article  Google Scholar 

  29. Niu L, Li Z, Xu Y, Sun J, Hong W, Liu X, Wang J, Yang S (2013) Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS Appl Mater Interfaces 16:8044–8052

    Article  Google Scholar 

  30. Mani, S.; Vediyappan, V.; Chen, S. M.; Madhu, R.; Pitchaimani, V.; Chang, J. Y.; Liu, S. B. (2016) Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors. Sci Rep, 24128

  31. Li M, Yokoyama S, Takahashi H, Tohji K (2019) Bandgap engineering of NiWO4/CdS solid Z-scheme system via an ion-exchange reaction. Appl Catal B Environ 284-291

  32. Anis SF, Lalia BS, Mostafa AO, Hashaikeh R (2017) Electrospun nickel–tungsten oxide composite fibers as active electrocatalysts for hydrogen evolution reaction. J Mater Sci 12:7269–7281

    Article  Google Scholar 

  33. Lu Q, Chen JG, Xiao JQ (2013) Nanostructured electrodes for high-performance pseudocapacitors. Angew Chem Int Ed Eng 7:1882–1889

    Article  Google Scholar 

  34. Zhang Z, Zhang X, Feng Y, Wang X, Sun Q, Yu D, Tong W, Zhao X, Liu X (2018) Fabrication of porous ZnCo2O4 nanoribbon arrays on nickel foam for high-performance supercapacitors and lithium-ion batteries. Electrochim Acta 823-829

  35. Pan Y, Zeng W, Li L, Zhang Y, Dong Y, Cao D, Wang G, Lucht BL, Ye K, Cheng K (2017) A facile synthesis of ZnCo2O4 nanocluster particles and the performance as anode materials for lithium ion batteries. Nano Lett 2:20

    Article  Google Scholar 

  36. Yu L, Zhang G, Yuan C, Lou XW (2013) Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem Commun (Camb) 2:137–139

    Article  Google Scholar 

  37. Gujar TP, Shinde VR, Lokhande CD, Kim W-Y, Jung K-D, Joo O-S (2007) Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor. Electrochem Commun 3:504–510

    Article  Google Scholar 

  38. Samdani KJ, Park JH, Joh DW, Lee KT (2018) Self-assembled Bi2MoO6 nanopetal array on carbon spheres toward enhanced supercapacitor performance. ACS Sustain Chem Eng

  39. Wang S, Teng Y, Liu X, Yu D, Meng YN, Wu Y, Sun S, Zhao X, Liu X (2019) Facile synthesis of mesoporous ZnCo2O4 nanowire arrays and nanosheet arrays directly grown on nickel foam for high-performance supercapacitors. Inorg Chem Commun 16-22

  40. Xu L, Zhao Y, Lian J, Xu Y, Bao J, Qiu J, Xu L, Xu H, Hua M, Li H (2017) Morphology controlled preparation of ZnCo 2 O 4 nanostructures for asymmetric supercapacitor with ultrahigh energy density. Energy 296-304

  41. Zhou, Y.; Chen, L.; Jiao, Y.; Li, Z.; Gao, Y. (2019) Controllable fabrication of ZnCo2O4 ultra-thin curved sheets on Ni foam for high-performance asymmetric supercapacitors. Electrochim Acta, 388–394

  42. Huang Y, Miao YE, Lu H, Liu T (2015) Hierarchical ZnCo2O4 @NiCo2O4 core-sheath nanowires: bifunctionality towards high-performance supercapacitors and the oxygen-reduction reaction. Chemistry 28:10100–10108

    Article  Google Scholar 

  43. Huang Y, Feng X, Li C, Li Y, Chen X, Gao X, Chen C, Guang Z, Liu P (2019) Construction of hydrangea-like ZnCo2O4@Ni3V2O8 hierarchical nanostructures for asymmetric all-solid-state supercapacitors. Ceram Int 12:15451–15457

    Article  Google Scholar 

  44. Peng L, Lv L, Wan H, Ruan Y, Ji X, Liu J, Miao L, Wang C, Jiang J (2017) Understanding the electrochemical activation behavior of Co(OH)2 nanotubes during the ion-exchange process. Materials Today Energy 122-131

  45. Lv L, Xu K, Wang C, Wan H, Ruan Y, Liu J, Zou R, Miao L, Ostrikov K, Lan Y, Jiang J (2016) Intercalation of glucose in NiMn-layered double hydroxide nanosheets: an effective path way towards battery-type electrodes with enhanced performance. Electrochim Acta 35-43

  46. Chen H, Jiang J, Zhang L, Qi T, Xia D, Wan H (2014) Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J Power Sources 28-36

  47. Lv L, Zha D, Ruan Y, Li Z, Ao X, Zheng J, Jiang J, Chen HM, Chiang WH, Chen J, Wang C (2018) A universal method to engineer metal oxide-metal-carbon interface for highly efficient oxygen reduction. ACS Nano 3:3042–3051

    Article  Google Scholar 

  48. Lv L, Li Z, Xue K-H, Ruana Y, Ao X, Wan H, Miao X, Zhang B, Jiang J, Wang C, Ostrikov KK (2018) Tailoring the electrocatalytic activity of bimetallic nickel-iron diselenide hollow nanochains for water oxidation. Nano Energy 275-284

  49. Ruan Y, Lv L, Li Z, Wang C, Jiang J (2017) Ni nanoparticles@Ni-Mo nitride nanorod arrays: a novel 3D-network hierarchical structure for high areal capacitance hybrid supercapacitors. Nanoscale 45:18032–18041

    Article  Google Scholar 

  50. Dianmei Songa JZ, Lia J, Pua T, Huanga B, Zhaoa C, Xiea L, Lingyun Chena B* (2017) Free-standing two-dimensional mesoporous ZnCo2O4 thin sheets consisting of 3D ultrathin nanoflake array frameworks for high performance asymmetric supercapacitor. Electrochim Acta 257:455–464

    Article  Google Scholar 

  51. Ma W, Nan H, Gu Z, Geng B, Zhang X (2015) Superior performance asymmetric supercapacitors based on ZnCo2O4@MnO2 core–shell electrode. J Mater Chem A 10:5442–5448

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifang Guo or Gang Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Chang, Z., Guo, L. et al. String-like core-shell ZnCo2O4@NiWO4 nanowire/nanosheet arrays on Ni foam for binder-free supercapacitor electrodes. Ionics 26, 2537–2547 (2020). https://doi.org/10.1007/s11581-019-03380-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03380-z

Keywords

Navigation