Skip to main content

Advertisement

Log in

Na2 + 2xFe2-x (SO4)3@rice husks carbon composite as a high-performance cathode material for sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Na2 + 2xFe2-x (SO4)3 (NFS) holds great promise as the cathode material for room-temperature sodium-ion batteries. However, large-scale application of NFS is highly impeded by its low electrical conductivity, which leads to poor cyclability and rate capability. To address these issues, we introduce rice husk-derived carbon with engineered porosity and structure as carrier to load active material NFS. The resultant hybrid material delivers extremely high specific charge capacity of 113.4 mAh g−1 at 0.1 C (1 C = 120 mA g−1), and a large reversible capacity of 81.2 mAh g−1 is retained after 100 cycles with a high retention rate of about 83.9%. The capacity of the composite can reach 60 mAh g−1 even at the current density 5 C. These excellent electrochemical performances are attributed to a favorable combination of the interpenetrating conductive carbon framework and ordered mesoporous structure that maintain well-balanced ionic and electronic conductivities throughout the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958

    Article  CAS  Google Scholar 

  2. Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed Engl 46:3431–3448

    Article  CAS  Google Scholar 

  3. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    Article  CAS  PubMed  Google Scholar 

  4. Gao L, Chen S, Zhang LL, Yang XL (2019) Tailoring NaxMnO2 nanosheet arrays with hierarchical construction for efficient sodium ion storage. J Alloys Compd 782:81–88

    Article  CAS  Google Scholar 

  5. Gao L, Chen S, Zhang LL, Yang XL (2018) High performance sodium ion hybrid supercapacitors based on Na2Ti3O7 nanosheet arrays. J Alloys Compd 766:284–290

    Article  CAS  Google Scholar 

  6. Gao L, Wang LC, Dai SR, Cao ML, Zhong ZC, Shen Y, Wang MK (2017) Li4Ti5O12-TiO2 nanowire arrays constructed with stacked nanocrystals for high-rate lithium and sodium ion batteries. J Power Sources 344:223–232

    Article  CAS  Google Scholar 

  7. Gao L, Chen S, Zhang LL, Yang XL (2018) Self-supported Na0.7CoO2 nanosheet arrays as cathodes for high performance sodium ion batteries. J Power Sources 396:379–385

    Article  CAS  Google Scholar 

  8. Wang L, Lu YH, Liu J, Xu MW, Cheng JG, Zhang DW, Goodenough JB (2013) A superior low-cost cathode for a Na-ion battery. Angew Chem 125:2018–2021

    Article  Google Scholar 

  9. Yue YF, Binder AJ, Guo BK, Zhang ZY, Qiao ZA, Tian CC, Dai S (2014) Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angew Chem Int Ed 53:3134–3137

    Article  CAS  Google Scholar 

  10. Zhang LL, Zhou YX, Li T, Ma D, Yang XL (2018) Multi-heteroatom doped carbon coated Na3V2(PO4)3 derived from ionic liquid. Dalton Trans 47:4259–4266

    Article  CAS  PubMed  Google Scholar 

  11. Nisar U, Shakoor RA, Essehli R, Amin R, Orayech B, Ahmad Z, Kumar PR, Kahraman R, Qaradawi SA, Soliman A (2018) Sodium intercalation/de-intercalation mechanism in Na4MnV(PO4)3 cathode materials. Electrochim Acta 292:98–106

    Article  CAS  Google Scholar 

  12. Gao HC, Li YT, Park K, Goodenough JB (2016) Sodium extraction from NASICON-structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) redox couples. Chem Mater 28:6553–6559

    Article  CAS  Google Scholar 

  13. Gao HC, Seymour ID, Xin S, Xue LG, Henkelman G, Goodenough JB (2018) Na3MnZr(PO4)3: a high-voltage cathode for sodium batteries. J Am Chem Soc 140:18192–18199

    Article  CAS  PubMed  Google Scholar 

  14. Zhang LL, Ma D, Li T, Liu J, Ding XK, Huang YH, Yang XL (2018) Polydopamine-derived nitrogen-doped carbon covered Na3V2(PO4)2F3 cathode material for high-performance Na-ion batteries. ACS Appl Mater Interfaces 10:36851–36859

    Article  CAS  PubMed  Google Scholar 

  15. Ma D, Zhang LL, Li T, Liu C, Liang G, Zhou YX (2018) Enhanced electrochemical performance of carbon and aluminum oxide co-coated Na3V2(PO4)2F3 cathode material for sodium ion batteries. Electrochim Acta 283:1441–1449

    Article  CAS  Google Scholar 

  16. Lin B, Zhang S, Deng C (2016) Understanding the effect of depressing surface moisture sensitivity on promoting sodium intercalation in coral-like Na3.12Fe2.44(P2O7)2/C synthesized via a flash-combustion strategy. J Mater Chem A 4:2550–2559

    Article  CAS  Google Scholar 

  17. Li HX, Zhang ZA, Xu M, Bao WZ, Lai YQ, Zhang K, Li J (2018) Triclinic off-stoichiometric Na3.12Mn2.44(P2O7)2/C cathode materials for high-energy/power sodium-ion batteries. ACS Appl Mater Interfaces 10:24564–24572

    Article  CAS  PubMed  Google Scholar 

  18. Ko W, Park T, Park H, Lee Y, Leeb KE, Kim J (2018) Na0.97KFe(SO4)2: an iron-based sulfate cathode material with outstanding cyclability and power capability for Na-ion batteries. J Mater Chem A 6:17095–17100

    Article  CAS  Google Scholar 

  19. Dwibedi D, Araujo RB, Chakraborty S, Shanbogh PP, Sundaram NG, Ahujab R, Barpanda P (2015) Na2.44Mn1.79(SO4)3: a new member of the alluaudite family of insertion compounds for sodium ion batteries. J Mater Chem A 3:18564–18571

    Article  CAS  Google Scholar 

  20. Zhang S, Deng C, Meng Y (2014) Bicontinuous hierarchical Na7V4(P2O7)4(PO4)/C nanorod-graphene composite with enhanced fast sodium and lithium ions intercalation chemistry. J Mater Chem A 2:20538–20544

    Article  CAS  Google Scholar 

  21. Barpanda P, Oyama G, Nishimura S, Chung SC, Yamada A (2014) A 3.8-V Earth-abundant sodium battery electrode. Nat Commun 5:4358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ming J, Barpanda P, Nishimura SI, Okubo M, Yamada A (2015) An alluaudite Na2+2xFe2−x(SO4)3 (x=0.2) derivative phase as insertion host for lithium battery. Electrochem Commun 51:19–22

    Article  CAS  Google Scholar 

  23. Oyama G, Nishimura SI, Suzuki Y, Okubo M, Yamada A (2015) Off-stoichiometry in alluaudite-type sodium iron sulfate Na2+2xFe2−x(SO4)3 as an advanced sodium battery cathode material. Chem Electro Chem 2:1019–1023

    CAS  Google Scholar 

  24. Wong LL, Chen HM, Adams S (2015) Sodium-ion diffusion mechanisms in the low cost high voltage cathode material Na(2+δ)Fe(2-δ/2)(SO4)3. Phys Chem Chem Phys 17:9186–9193

    Article  CAS  PubMed  Google Scholar 

  25. Lu JC, Yamada A (2016) Ionic and electronic transport in alluaudite Na2+2xFe2-x(SO4)3. Chem Electro Chem 3:902–905

    CAS  Google Scholar 

  26. Meng Y, Li QF, Yu TT, Zhang S, Deng C (2016) Architecture–property relationships of zero-, one- and two-dimensional carbon matrix incorporated Na2Fe(SO4)2·2H2O/C. Cryst Eng Comm 18:1645–1654

    Article  CAS  Google Scholar 

  27. Meng Y, Zhang S, Deng C (2015) Superior sodium–lithium intercalation and depressed moisture sensitivity of a hierarchical sandwich-type nanostructure for a graphene–sulfate composite: a case study on Na2Fe(SO4)2·2H2O. J Mater Chem A 3:4484–4492

    Article  CAS  Google Scholar 

  28. Liu Q, Wang DX, Yang X, Chen N, Wang CZ, Bie XF, Wei YJ, Chen G, Du F (2015) Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life. J Mater Chem A 3:21478–21485

    Article  CAS  Google Scholar 

  29. Ni Q, Bai Y, Wu F, Wu C (2017) Polyanion-type electrode materials for sodium-ion batteries. Adv Sci (Weinh) 4:1600275

    Article  CAS  Google Scholar 

  30. Meng Y, Yu TT, Zhang S, Deng C (2016) Top-down synthesis of muscle-inspired alluaudite Na2+2xFe2−x(SO4)3/SWNT spindle as a high-rate and high-potential cathode for sodium-ion batteries. J Mater Chem A 4:1624–1631

    Article  CAS  Google Scholar 

  31. Yu TT, Lin B, Li QF, Wang XG, Qu WL, Zhang S, Deng C (2016) First exploration of freestanding and flexible Na2+2xFe2-x(SO4)3@porous carbon nanofiber hybrid films with superior sodium intercalation for sodium ion batteries. Phys Chem Chem Phys 18:26933–26941

    Article  CAS  PubMed  Google Scholar 

  32. Zhang M, Qi H, Qiu HL, Zhang T, Zhao XS, Yue HJ, Chen G, Wang CZ, Wei YJ, Zhang D (2018) Reduced graphene oxide wrapped alluaudite Na2+2xFe2-x(SO4)3 with high rate sodium ion storage properties. J Alloys Compd 752:267–273

    Article  CAS  Google Scholar 

  33. Yao Y, Wu F (2015) Naturally derived nanostructured materials from biomass for rechargeable lithium/sodium batteries. Nano Energy 17:91–103

    Article  CAS  Google Scholar 

  34. Xiang JY, Lv WM, Mu CP, Zhao J, Wang BC (2017) Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. J Alloys Compd 701:870–874

    Article  CAS  Google Scholar 

  35. Hou JH, Cao CB, Ma XL, Idrees F, Xu B, Hao X, Lin W (2014) From rice bran to high energy density supercapacitors: a new route to control porous structure of 3D carbon. Sci Rep 4:7260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cui JL, Cui YF, Li SH, Sun HL, Wen ZS, Sun JC (2016) Microsized porous SiOx@C composites synthesized through aluminothermic reduction from rice husks and used as anode for lithium-ion batteries. ACS Appl Mater Interfaces 8:30239–30247

    Article  CAS  PubMed  Google Scholar 

  37. Kaviyarasu K, Manikandan E, Kennedy J, Jayachandran M, Maaza M (2016) Rice husks as a sustainable source of high quality nanostructured silica for high performance Li-ion battery requital by sol-gel method—a review. Adv Mater Lett 7:684–696

    Article  CAS  Google Scholar 

  38. Yuan CJ, Lin HB, Lu HY, Xing ED, Zhang YS, Xie BY (2016) Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors. Appl Energy 178:260–268

    Article  CAS  Google Scholar 

  39. Zhang YC, You Y, Xin S, Yin YX, Zhang J, Wang P, Zheng XS, Cao FF, Guo YG (2016) Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25:120–127

    Article  CAS  Google Scholar 

  40. Zhang SW, Gao HH, Li JX, Huang YS, Alsaedi A, Hayat T, Xu XJ, Wang XK (2017) Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis. J Hazard Mater 321:92–102

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Wang FY, Liang JC, Hu XY, Yu KF (2016) Preparation of disordered carbon from rice husks for lithium-ion batteries. New J Chem 40:325–329

    Article  CAS  Google Scholar 

  42. Wei SH, Benoit MDB, Oyama G, Nishimura S-I, Yamada A (2016) Synthesis and electrochemistry of Na2.5(Fe1−yMny)1.75(SO4)3solid solutions for Na-ion batteries. Chem Electro Chem 3:209–213

    CAS  Google Scholar 

  43. Wang W, Liu XH, Xu QJ, Liu HM, Wang YG, Xia YY, Chao YL, Ai XP (2018) A high voltage cathode of Na2+2xFe2-x(SO4)3 intensively protected by nitrogen-doped graphene with improved electrochemical performance of sodium storage. J Mater Chem A 6:4354–4364

    Article  Google Scholar 

  44. Zhang H, Yu FQ, Kang WP, Shen Q (2015) Encapsulating selenium into macro-/micro-porous biochar-based framework for high-performance lithium-selenium batteries. Carbon 95:354–363

    Article  CAS  Google Scholar 

  45. Qiu HL, Zhu K, Li HM, Li TT, Zhang T, Yue HJ, Wei YJ, Du F, Wang CZ, Chen G, Zhang D (2015) Mesoporous Li2FeSiO4@ordered mesoporous carbon composites cathode material for lithium-ion batteries. Carbon 87:365–373

    Article  CAS  Google Scholar 

  46. Sobkowiak A, Ericsson T, Edström K, Gustafsson T, Björefors F, Häggsröm L (2013) A Mössbauer spectroscopy study of polyol synthesized tavorite LiFeSO4F. Hyperfine Interact 226:229–236

    Article  CAS  Google Scholar 

  47. Lee JT, Kim H, Oschatz M, Lee DC, Wu FX, Lin HT, Zdyrko B, Cho WI, Kaskel S, Yushin G (2015) Micro- and mesoporous carbide-derived carbon-selenium cathodes for high-performance lithium selenium batteries. Adv Energy Mater 5:1400981

    Article  CAS  Google Scholar 

  48. Barpanda P (2016) Pursuit of sustainable iron-based sodium battery cathodes: two case studies. Chem Mater 47:1006–1011

    Article  CAS  Google Scholar 

  49. Oyama G, Pecher O, Griffith KJ, Nishimura S, Pigliapochi R, Grey CP, Yamada A (2016) Sodium intercalation mechanism of 3.8 V class alluaudite sodium iron sulfate. Chem Mater 28:5321–5328

    Article  CAS  Google Scholar 

  50. Guo ZD, Zhang D, Qiu HL, Zhang T, Fu Q, Zhang LJ, Yan X, Meng X, Chen G, Wei YJ (2015) Improved cycle stability and rate capability of graphene oxide wrapped tavorite LiFeSO4F as cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 7:13972–13979

    Article  CAS  PubMed  Google Scholar 

  51. Bian XF, Fu Q, Qiu HL, Du F, Gao Y, Zhang LJ, Zou B, Chen G, Wei YJ (2015) High-performance Li(Li0.18Ni0.15Co0.15Mn0.52)O2@Li4M5O12 heterostructured cathode material coated with a lithium borate oxide glass layer. Chem Mater 27:5745–5754

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by funding from “973” project (No. 2015CB251103), National Natural Science Foundation of China (No. 21771086), S&T Development Program of Jilin Province (Nos. 20160101320JC, 20180101293JC), and Jilin Provincial Department of Education “13th Five-Year” scientific research project (No. JJKH20180116KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huijuan Yue or Dong Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 2216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, H., Yue, H., Qi, H. et al. Na2 + 2xFe2-x (SO4)3@rice husks carbon composite as a high-performance cathode material for sodium-ion batteries. Ionics 25, 3727–3736 (2019). https://doi.org/10.1007/s11581-019-02951-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02951-4

Keywords

Navigation