Skip to main content
Log in

Synthesis and electrochemical properties of P2-Na0.7Zn0.15Mn0.75O2

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A layered Zn-doped compound of Na0.7Zn0.15Mn0.75O2 is synthesized by a facile solid-state method. The product exhibits the same structure as P2-Na2/3Ni1/3Mn2/3O2, and some particles of the product are of lamellar shape with the thickness being about 0.6 μm. When the material is tested on the properties of intercalating/deintercalating Na+ in the voltage 2–4.4 V, it can deliver an initial discharge capacity of 158 mAh g−1. When the material is charged to different voltage, XPS spectra are performed on the surface of this material, and it is disclosed that oxygen activity makes the main part of contributions to charge compensation on the initial extracting Na+ process, while there is no apparent peak shift for the XPS spectra of Mn 2P3/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ammundsen B, Paulsen J (2001) Novel lithium-ion cathode materials based on layered manganese oxides. Adv Mater 13:943–956

    Article  CAS  Google Scholar 

  2. Robertson AD, Bruce PG (2003) Chem Mater 15:1984–1992

    Article  CAS  Google Scholar 

  3. Du K, Zhu JY, Hu GR, Gao HC, Li YT, Goodenough JB (2016) Exploring reversible oxidation of oxygen in a manganese oxide. Energy Environ Sci 9:2575–2577

    Article  CAS  Google Scholar 

  4. Xu J, Lee DH, Clement RJ, Yu XQ, Leskes M, Pell AJ, Pintacuda G, Yang XQ, Grey CP, Meng YS (2014) Identifying the critical role of Li substitution in P2–Nax[LiyNizMn1–y–z]O2(0 <x, y, z< 1) intercalation cathode materials for high-energy Na-ion batteries. Chem Mater 26:1260–1269

    Article  CAS  Google Scholar 

  5. Guignard M, Didier C, Darriet J, Bordet P, Elkaim E, Delmas C (2013) P2-Na x VO2 system as electrodes for batteries and electron-correlated materials. Nat Mater 12:74–80

    Article  CAS  PubMed  Google Scholar 

  6. Ma CZ, Alvarado J, Xu J, Clement RJ, Kodur M, Tong W, Grey CP, Meng SY (2017) Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries. J Am Chem Soc 139:4835–4845

    Article  CAS  PubMed  Google Scholar 

  7. Kang WP, Zhang ZY, Lee PK, Ng TW, Li WY, Tang YB, Zhang WJ, Lee CS, Yu DYW (2015) Copper substituted P2-type Na0.67CuxMn1−xO2: a stable high-power sodium-ion battery cathode. J Mater Chem A 3:22846–22852

    Article  CAS  Google Scholar 

  8. Zhu YE, Qi XG, Chen XQ, Zhou XL, Zhang X, Wei JO, Hu YS, Zhou Z (2016) J Mater Chem A4:11103–11109

    Article  CAS  Google Scholar 

  9. Zhang XH, Pang WL, Wan F, Guo JZ, Lu HY, Li JY, Xing YM, Zhang JP, Wu XL (2016) ACS Appl Mater Interfaces 8:20650–20659

    Article  CAS  PubMed  Google Scholar 

  10. Li ZY, Gao R, Sun LM, Hu ZB, Liu XF Electrochim Acta 223:92–99

  11. Wang PF, You Y, Yin YY, Wang YS, Wan LJ, Gu L, Guo YG (2016) Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed 55:7445–7449

    Article  CAS  Google Scholar 

  12. Yue JL, Yin WW, Cao MH, Zulipiya S, Zhou YN, Fu ZW (2015) A quinary layer transition metal oxide of NaNi1/4Co1/4Fe1/4Mn1/8Ti1/8O2as a high-rate-capability and long-cycle-life cathode material for rechargeable sodium ion batteries. Chem Commun 51:15712–15715

    Article  CAS  Google Scholar 

  13. Singh G, Del Amo JML, Galceran M, Perez-Villar S, Rojo T (2015) Structural evolution during sodium deintercalation/intercalation in Na2/3[Fe1/2Mn1/2]O2. J Mater Chem A 3:6954–6961

    Article  CAS  Google Scholar 

  14. Yang LF, Li X, Ma XT, Xiong S, Liu P, Tang YZ, Cheng S, Hu YY, Liu ML, Chen HL (2018) J Power Sources 381:171–180

    Article  CAS  Google Scholar 

  15. Buchholz D, Chagas LG, Winter M, Passerini S (2013) P2-type layered Na0.45Ni0.22Co0.11Mn0.66O2 as intercalation host material for lithium and sodium batteries. Electrochim Acta 110:208–213

    Article  CAS  Google Scholar 

  16. Wang L, Sun YG, Hu LL, Piao JY, Guo J, Manthiram A, Ma JM, Cao AM (2017) Copper-substituted Na0.67Ni0.3−xCuxMn0.7O2cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition. J Mater Chem A 5:8752–8761

    Article  CAS  Google Scholar 

  17. Buchholz D, Vaalma C, Chagas LG, Passerini S (2015) Mg-doping for improved long-term cyclability of layered Na-ion cathode materials – the example of P2-type Na x Mg 0.11 Mn 0.89 O 2. J Power Sources 282:581–585

    Article  CAS  Google Scholar 

  18. Wang HB, Gao R, Li ZY, Sun LM, Hu ZB, Liu XF (2018) Different effects of Al substitution for Mn or Fe on the structure and electrochemical properties of Na0.67Mn0.5Fe0.5O2as a sodium ion battery cathode material. Inorg Chem 57:5249–5257

    Article  CAS  PubMed  Google Scholar 

  19. Zheng YL, Wang HB, Chen DF, Sun K, Yang WY, Yang JB, Liu XF, Han SB (2018) Chem Sus Chem 11:1223

    Article  CAS  Google Scholar 

  20. Zheng YL, Wang HB, Yang WY, Yang JB, Zheng LR, Chen DF, Sun K, Han SB, Liu XF (2018) Acs Appl Mater Inter 10:1707–1718

    Article  CAS  Google Scholar 

  21. Zhang C, Gao R, Zheng LR, Hao YM, Liu XF (2018) New insights into the roles of Mg in improving the rate capability and cycling stability of O3-NaMn0.48Ni0.2Fe0.3Mg0.02O2 for sodium-ion batteries. Acs Appl Mater Inter 10:10819–10827

    Article  CAS  Google Scholar 

  22. Kalapsazova M, Stoyanova R, Zhecheva E (2014) Structural characterization and electrochemical intercalation of Li+ in layered Na0.65Ni0.5Mn0.5O2 obtained by freeze-drying method. J Solid State Electr 18:2343–2350

    Article  CAS  Google Scholar 

  23. Audi AA, Sherwood PMA (2002) Valence-band x-ray photoelectron spectroscopic studies of manganese and its oxides interpreted by cluster and band structure calculations. Surf Interface Anal 33:274–282

    Article  CAS  Google Scholar 

  24. Zhang Y, Cheng K, Ye K, Gao YY, Zhao WB, Wang GL, Cao DX (2015) Preparation of M1/3Ni1/3Mn2/3O2 (M=Mg or Zn) and its performance as the cathode material of aqueous divalent cations battery. Electrochim Acta 182:971–978

    Article  CAS  Google Scholar 

  25. Shimoda K, Minato T, Nakanishi K, Komatsu H, Matsunaga T, Tanida H, Arai H, Ukyo Y, Uchimoto Y, Ogumi Z (2016) Oxidation behaviour of lattice oxygen in Li-rich manganese-based layered oxide studied by hard X-ray photoelectron spectroscopy. J Mater Chem A 4:5909–5916

    Article  CAS  Google Scholar 

  26. Tang CY, Feng L, Haasch RT, Dillon SJ (2018) Surface redox on Li[Ni 1/3 Mn 1/3 Co 1/3 ]O 2 characterized by in situ X-ray photoelectron spectroscopy and in situ Auger electron spectroscopy. Electrochim Acta 277:197–204

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge financial support received from National Natural Science Foundation of China (No. 51574081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoqiang Liu or Xiaohua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, G., Yu, H. et al. Synthesis and electrochemical properties of P2-Na0.7Zn0.15Mn0.75O2. Ionics 25, 2195–2200 (2019). https://doi.org/10.1007/s11581-018-2681-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2681-5

Keywords

Navigation