Skip to main content
Log in

Amino-functionalized graphene/chitosan composite as an enhanced sensing platform for highly selective detection of Cu2+

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The present work reports a facile and direct electrochemical method for sensing of trace Cu2+ by employing amino-functionalized graphene (NH2–G) and chitosan (Cs) as enhanced sensing platform. Amino-functionalized graphene was prepared by using a simple and effective solvothermal method and characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The novel amino-functionalized graphene/chitosan (NH2–G/Cs) composite was facilely prepared by sonochemical method. After being characterized with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), some relevant parameters influencing the sensor response were investigated and optimized. Analytical performance of the NH2–G/Cs modified glassy carbon electrode for the determination of Cu2+ was evaluated by differential pulse voltammetry (DPV). Under optimized operating conditions, the sensor linearly responded to Cu2+ concentration in the range from 0.4 to 40 μmol/L with a detection limit of 0.064 μmol/L (S/N = 3). Most importantly, the NH2–G/Cs/GCE achieved high selectivity and sensitivity for the analysis of trace Cu2+ in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Parveen SDS, Kumar BS, Kumar SR, Khan RI, Pitchumani K (2015) Isolation of biochanin A, an isoflavone, and its selective sensing of copper (II) ion. Sens Actuators B: Chem 221:75–80

    Article  Google Scholar 

  2. Regulations EDW (1991) Maximum contaminant level goals and national primary drinking water regulations for lead and copper; final rule. Fed Reg 56:26460–26564

    Google Scholar 

  3. Mercer JF (2001) The molecular basis of copper-transport diseases. Trends Mol Med 7:64–69

    Article  CAS  Google Scholar 

  4. Lu ZZ, Yang SL, Yang Q, Luo SL, Liu CB, Tang YH (2013) A glassy carbon electrode modified with graphene, gold nanoparticles and chitosan for ultrasensitive determination of lead (II). Microchim Act 180:555–562

    Article  CAS  Google Scholar 

  5. Lee GJ, Lee HM, Rhee CK (2007) Bismuth nano-powder electrode for trace analysis of heavy metals using anodic stripping voltammetry. Electrochem Commun 9:2514–2518

    Article  CAS  Google Scholar 

  6. e Silva CDCC, Breitkreitz MC, Santhiago M, Corrêa CC, Kubota LT (2012) Construction of a new functional platform by grafting poly (4-vinylpyridine) in multi-walled carbon nanotubes for complexing copper ions aiming the amperometric detection of l-cysteine. Electrochim Acta 71:150–158

    Article  Google Scholar 

  7. Shan J, Liu Y, Li RZ, Wu C, Zhu LH, Zhang JD (2015) Indirect electrochemical determination of ciprofloxacin by anodic stripping voltammetry of Cd (II) on graphene-modified electrode. J Electroanal Chem 738:123–129

    Article  CAS  Google Scholar 

  8. Liu YN, Park M, Shin HK, Pant BS, Choi J, Park YW, Kim HY (2014) Facile preparation and characterization of poly (vinyl alcohol)/chitosan/graphene oxide biocomposite nanofibers. J Ind Eng Chem 20:4415–4420

    Article  CAS  Google Scholar 

  9. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. Trac-Trend Anal Chem 29:954–965

    Article  CAS  Google Scholar 

  10. Alaie MM, Jahangiri M, Rashidi AM, Asl AH, Izadi N (2015) A novel selective H2S sensor using dodecylamine and ethylenediamine functionalized graphene oxide. J Ind Eng Chem 29:97–103

    Article  Google Scholar 

  11. Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    Article  CAS  Google Scholar 

  12. Chang JB, Zhou GH, Christensen ER, Heideman R, Chen JH (2014) Graphene-based sensors for detection of heavy metals in water: a review. Anal Bioanal Chem 406:3957–3975

    Article  CAS  Google Scholar 

  13. Zhang CZ, Hao R, Liao HB, Hou YL (2013) Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy 2:88–97

    Article  CAS  Google Scholar 

  14. Guo XY, Wei Q, Du B, Zhang YK, Xin XD, Yan LG, Yu HQ (2013) Removal of Metanil Yellow from water environment by amino functionalized graphenes (NH 2-G)—influence of surface chemistry of NH 2-G. Appl Surf Sci 284:862–869

    Article  CAS  Google Scholar 

  15. Hadavifar M, Bahramifar N, Younesi H, Li Q (2014) Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chem Eng J 237:217–228

    Article  CAS  Google Scholar 

  16. Yang GX, Jiang H (2014) Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res 48:396–450

    Article  CAS  Google Scholar 

  17. Liu L, Li C, Bao CL, Jia Q, Xiao PF, Liu XT, Zhang Q (2012) Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au (III) and Pd (II). Talanta 93:350–357

    Article  CAS  Google Scholar 

  18. Niu XL, Yang W, Ren J, Guo H, Long SJ, Chen JJ, Gao JZ (2012) Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode. Electrochim Acta 80:346–353

    Article  CAS  Google Scholar 

  19. Weng XX, Cao QX, Liang LX, Chen JR, You CP, Ruan YM, Wu LJ (2013) Simultaneous determination of dopamine and uric acid using layer-by-layer graphene and chitosan assembled multilayer films. Talanta 117:359–365

    Article  CAS  Google Scholar 

  20. Ghaee A, Shariaty-Niassar M, Barzin J, Zarghan A (2012) Adsorption of copper and nickel ions on macroporous chitosan membrane: equilibrium study. Appl Surf Sci 258:7732–7743

    Article  CAS  Google Scholar 

  21. Ahmad M, Ahmed S, Swami BL, Ikram S (2015) Preparation and characterization of antibacterial thiosemicarbazide chitosan as efficient Cu (II) adsorbent. Carbohyd Polym 132:164–172

    Article  CAS  Google Scholar 

  22. Igberase E, Osifo P, Ofomaja A (2014) The adsorption of copper (II) ions by polyaniline graft chitosan beads from aqueous solution: equilibrium, kinetic and desorption studies. J Environ Chem Eng 2:362–369

    Article  CAS  Google Scholar 

  23. Negm NA, El Sheikh R, El-Farargy AF, Hefni HH, Bekhit M (2015) Treatment of industrial wastewater containing copper and cobalt ions using modified chitosan. J Ind Eng Chem 21:526–534

    Article  CAS  Google Scholar 

  24. Rajabzadeh S, Rounaghi GH, Arbab-Zavar MH, Ashraf N (2014) Development of a dimethyl disulfide electrochemical sensor based on electrodeposited reduced graphene oxide-chitosan modified glassy carbon electrode. Electrochim Acta 135:543–549

    Article  CAS  Google Scholar 

  25. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  26. Zhu CZ, Guo SJ, Fang YX, Dong SJ (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429–2437

    Article  CAS  Google Scholar 

  27. Lai LF, Chen LW, Zhan D, Sun L, Liu JP, Lim SH, Lin JY (2011) One-step synthesis of NH 2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties. Carbon 49:3250–3257

    Article  CAS  Google Scholar 

  28. Salimi A, Pourbahram B, Mansouri-Majd S, Hallaj R (2015) Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium (III) detection. Electrochim Acta 156:207–215

    Article  CAS  Google Scholar 

  29. Oliveira PR, Lamy-Mendes AC, Rezende EIP, Mangrich AS, Junior LHM, Bergamini MF (2015) Electrochemical determination of copper ions in spirit drinks using carbon paste electrode modified with biochar. Food Chem 171:426–431

    Article  CAS  Google Scholar 

  30. Liu HL, Li SW, Sun DM, Chen Y, Zhou YM, Lu TH (2014) Layered graphene nanostructures functionalized with NH 2-rich polyelectrolytes through self-assembly: construction and their application in trace Cu (ii) detection. J Mater Chem B 2:2212–2219

    Article  CAS  Google Scholar 

  31. Zhao H, Jiang Y, Ma YR, Wu ZJ, Cao Q, He YJ, Yuan ZB (2010) Poly (2-amino-4-thiazoleacetic acid)/multiwalled carbon nanotubes modified glassy carbon electrodes for the electrochemical detection of copper (II). Electrochim Acta 55:2518–2521

    Article  CAS  Google Scholar 

  32. Zhang W, Wei J, Zhu HJ, Zhang K, Ma F, Mei QS, Wang SH (2012) Self-assembled multilayer of alkyl graphene oxide for highly selective detection of copper (II) based on anodic stripping voltammetry. J Mater Chem 22:22631–22636

    Article  CAS  Google Scholar 

  33. Shao XL, Gu H, Wang Z, Chai XL, Tian Y, Shi GY (2013) Highly selective electrochemical strategy for monitoring of cerebral Cu2+ based on a carbon dot-tpea hybridized surface. Anal Chem 85:418–425

    Article  CAS  Google Scholar 

  34. Aragay G, Puig-Font A, Cadevall M (2010) Surface characterizations of mercury-based electrodes with the resulting micro and nano amalgam wires and spheres formations may reveal both gained sensitivity and faced nonstability in heavy metal detection. J Phys Chem C 114:9049–9055

    Article  CAS  Google Scholar 

  35. Viguier B, Zór K, Kasotakis E (2011) Development of an electrochemical metal-ion biosensor using self-assembled peptide nanofibrils. ACS Appl Mater Interfaces 3:1594–1600

    Article  CAS  Google Scholar 

  36. Mureseanu M, Popa DE, Buleandră M (2014) Copper electrochemical detection with hybrid mesoporous silica-Gly-Gly-His modified electrodes. Int J Electrochem Sci 9:5035–5048

    Google Scholar 

  37. Feier B, Bajan I, Fizesan I (2015) Highly selective electrochemical detection of copper (II) using N, N’-bis (acetylacetone) ethylenediimine as a receptor. Int J Electrochem Sci 10:121–139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunli Mo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, Z., Liu, H., Hu, R. et al. Amino-functionalized graphene/chitosan composite as an enhanced sensing platform for highly selective detection of Cu2+ . Ionics 24, 1505–1513 (2018). https://doi.org/10.1007/s11581-017-2309-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2309-1

Keywords

Navigation