Skip to main content

Advertisement

Log in

Graphene and polydopamine double-wrapped porous carbon-sulfur cathode materials for lithium-sulfur batteries with high capacity and cycling stability

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Rechargeable lithium-sulfur batteries are deemed to be a promising energy supply to next-generation high energy power system, yet dissolution of lithium polysulfides in the electrolyte leads to poor cycling performance. Here, we report an approach to assemble graphene and polydopamine double-wrapped porous carbon/sulfur (GN-PD-PC-S) for lithium-sulfur batteries. Remarkably, the double-wrapping graphene and polydopamine further help confine the sulfur and polysulfides inside the mesopores and micropores of porous carbon. Moreover, the hierarchical porous structures provide a conductive network for electron transfer and facilitate the effective accommodation of the volume change of sulfur. The GN-PD-PC-S cathode presents an excellent cycling stability of 821 mAh g−1 after 100 cycles, with a favorable high-rate capability of 496 mAh g−1 at a current density of 2 A g−1. Our results indicate the importance of chemically synergistic effect of polymer and carbon in the electrode system for achieving high-performance electrodes in rechargeable lithium-sulfur batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qiu QJ, Song WL, Wang LN, Song Y, Shi Q, Fan LZ (2014) Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries. Electrochim Acta 132:538–544

    Article  Google Scholar 

  2. Wang MS, Song WL, Wang J, Fan LZ (2015) Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries. Carbon 82:337–345

    Article  CAS  Google Scholar 

  3. Zhou D, Song WL, Fan LZ (2015) Hollow core-shell SnO2/C fibers as highly stable anodes for lithium-ion batteries. ACS Appl Mater Interface 7:21472–21478

    Article  CAS  Google Scholar 

  4. Ni HF, Song WL, Fan LZ (2014) A strategy for scalable synthesis of Li4Ti5O12/reduced graphene oxide toward high rate lithium-ion batteries. Electrochem Commun 40:1–4

    Article  CAS  Google Scholar 

  5. Yang Y, Zheng GY, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032

    Article  CAS  Google Scholar 

  6. Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wan LJ (2012) Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 134:18510–18513

    Article  CAS  Google Scholar 

  7. Danner T, Zhu G, Hofmann AF, Latz A (2015) Modeling of nano-structured cathodes for improved lithium-sulfur batteries. Electrochim Acta 184:124–133

    Article  CAS  Google Scholar 

  8. Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF (2015) A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat Commun 6:1–8

    Google Scholar 

  9. Yuan Z, Peng HJ, Huang JQ, Liu XY, Wang DW, Cheng XB, Zhang Q (2014) Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv Funct Mater 24:6105–6112

    Article  CAS  Google Scholar 

  10. Yang CP, Yin YX, Ye H, Jiang KC, Zhang J, Guo YG (2014) Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries. ACS Appl Mater Interfaces 6:8789–8795

    Article  CAS  Google Scholar 

  11. Wei SC, Zhang H, Huang YQ, Wang WK, Xia YZ, Yu ZB (2011) Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium-sulfur batteries. Energy Environ Sci 4:736–740

    Article  CAS  Google Scholar 

  12. Zheng SY, Han P, Han Z, Zhang HJ, Tang ZH, Yang JH (2014) High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery. Sci Rep 4:1–7

    Google Scholar 

  13. Yang J, Wang S, Ma Z, Du Z, Li C, Song J, Wang G, Shao G (2015) Novel nitrogen-doped hierarchically porous coralloid carbon materials as host matrixes for lithium-sulfur batteries. Electrochim Acta 159:8–15

    Article  CAS  Google Scholar 

  14. Tan YB, Jia ZQ, Lou PL, Cui ZH, Guo XX (2017) Self-assembly sandwiches of reduced graphene oxide layers with zeolitic-imidazolate-frameworks-derived mesoporous carbons as polysulfides reservoirs for lithium-sulfur batteries. J Power Sources 341:68–74

    Article  CAS  Google Scholar 

  15. Song JX, Xu T, Gordin ML, Zhu PY, Lv DP, Jiang YB, Chen YS, Duan YH, Wang DH (2014) Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv Funct Mater 24:1243–1250

    Article  CAS  Google Scholar 

  16. Wu F, Chen JZ, Li L, Zhao T, Liu Z, Chen RJ (2013) Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries. ChemSusChem 6:1438–1444

    Article  CAS  Google Scholar 

  17. Li WY, Zhang QF, Zheng GY, Seh ZW, Yao HB, Cui Y (2013) Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett 13:5534–5540

    Article  CAS  Google Scholar 

  18. Yin LC, Wang JL, Lin FJ, Yang J, Nuli YN (2012) Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries. Energy Environ Sci 5:6966–6972

    Article  CAS  Google Scholar 

  19. Wang C, Wang XS, Yang Y, Kushima A, Chen J, Huang YH, Li J (2015) Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery. Nano Lett 15:1796–1802

    Article  CAS  Google Scholar 

  20. Guo JC, Yang ZC, Yu YC, Abruňa HD, Archer LA (2013) Lithium-sulfur battery cathode enabled by lithium-nitrile interaction. J Am Chem Soc 135:763–767

    Article  CAS  Google Scholar 

  21. Yang Y, Yu GH, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao ZN, Cui Y (2011) Improving the performance of lithium-sulfur batteries by conductive polymer coating. ACS Nano 5:9187–9193

    Article  CAS  Google Scholar 

  22. Xiao LF, Cao YL, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie Z, Exarhos GJ, Liu J (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24:1176–1181

    Article  CAS  Google Scholar 

  23. Wang L, Wang D, Zhang F, Jin J (2013) Interface chemistry guided long-cycle-life Li–S battery. Nano Lett 13:4206–4211

    Article  CAS  Google Scholar 

  24. Wang ZY, Dong YF, Li HJ, Zhao ZB, Wu HB, Hao C, Liu SH, Qiu JS, Lou XW (2014) Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun 5:1–8

    Google Scholar 

  25. Zhou WD, Xiao XC, Cai M, Yang L (2014) Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries. Nano Lett 14:5250–5256

    Article  CAS  Google Scholar 

  26. Song WL, Fan LZ, Cao MS, Lu MM, Wang CY, Wang J, Chen TT, Li Y, Hou ZL, Liu J, Sun YP (2014) Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. J Mater Chem C 2:5057–5064

    Article  CAS  Google Scholar 

  27. Jung DS, Hwang TH, Lee JH, Koo HY, Shakoor RA, Kahraman R, Jo YN, Park MS, Choi JW (2014) Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium-sulfur battery. Nano Lett 14:4418–4425

    Article  CAS  Google Scholar 

  28. Wang J, Yang Y, Kang F (2015) Porous carbon nanofiber paper as an effective interlayer for high-performance lithium-sulfur batteries. Electrochim Acta 168:271–276

    Article  CAS  Google Scholar 

  29. Qiu YC, Li WF, Zhao W, Li GZ, Hou Y, Liu MN, Zhou LS, Ye FM, Li HF, Wei ZH, Yang SH, Duan WH, Ye YF, Guo JH, Zhang YG (2014) High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett 14:4821–4827

    Article  CAS  Google Scholar 

  30. Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3:1531–1537

    Article  CAS  Google Scholar 

  31. Yang X, Zhang L, Zhang F, Huang Y, Chen YS (2014) Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries. ACS Nano 8:5208–5215

    Article  CAS  Google Scholar 

  32. Li Z, Jiang Y, Yuan LX, Yi ZQ, Wu C, Liu Y, Strasser P, Huang YH (2014) A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries. ACS Nano 8:9295–9303

    Article  CAS  Google Scholar 

  33. Chen RJ, Zhao T, Lu J, Wu F, Li L, Chen JZ, Tan GQ, Ye YS, Amine K (2013) Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett 13:4642–4649

    Article  CAS  Google Scholar 

  34. Liang X, Wen ZY, Liu Y, Zhang H, Huang LZ, Jin J (2011) Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J Power Sources 196:3655–3658

    Article  CAS  Google Scholar 

  35. Zheng GY, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11:4462–4467

    Article  CAS  Google Scholar 

  36. Wang HL, Yang Y, Liang YY, Robinson JT, Li YG, Jackson A, Cui Y, Dai HJ (2011) Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644–2647

    Article  CAS  Google Scholar 

  37. Lu ST, Cheng YW, Wu XH, Liu J (2013) Significantly improved long-cycle stability in high-rate Li–S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. Nano Lett 13:2485–2489

    Article  CAS  Google Scholar 

  38. Xi K, Cao S, Peng XY, Ducati C, Kumar RV, Cheetham AK (2013) Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries. Chem Commun 49:2192–2194

    Article  CAS  Google Scholar 

  39. Barchasz C, Lepretre JC, Alloin F, Patoux S (2012) New insights into the limiting parameters of the Li/S rechargeable cell. J Power Sources 199:322–330

    Article  CAS  Google Scholar 

  40. Zhang XQ, Sun Q, Dong W, Li D, Lu AH, Mu JQ, Li WC (2013) Synthesis of superior carbon nanofibers with large aspect ratio and tunable porosity for electrochemical energy storage. J Mater Chem A 1:9449–9455

    Article  CAS  Google Scholar 

  41. Xie J, Yang J, Zhou XY, Zou YL, Tang JJ, Wang SC, Chen F (2014) Preparation of three-dimensional hybrid nanostructure-encapsulated sulfur cathode for high-rate lithium sulfur batteries. J Power Sources 253:55–63

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.D. and R.T.H. contributed equally to this work. This work was supported by the Natural Scientific Foundation of China (51532002, 51575030 and 51372022), National Basic Research Program of China (2015CB932500 and 2013CB934001), and State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Zhen Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., He, RT. & Fan, LZ. Graphene and polydopamine double-wrapped porous carbon-sulfur cathode materials for lithium-sulfur batteries with high capacity and cycling stability. Ionics 23, 3329–3337 (2017). https://doi.org/10.1007/s11581-017-2138-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2138-2

Keywords

Navigation