Skip to main content

Advertisement

Log in

Effect of the binder content on the electrochemical performance of composite cathode using Li6PS5Cl precursor solution in an all-solid-state lithium battery

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

All-solid-state batteries with cathode composites containing high concentration of active materials are required to achieve higher energy densities. Here, a composite cathode containing up to 89 wt% of high-voltage cathode active material (LiNi1/3Mn1/3Co1/3O2) was prepared by covering this with a solution-derived solid electrolyte (argyrodite, Li6PS5Cl) and the incorporation of different content binder (ethyl cellulose). All-solid-state batteries were fabricated using 80Li2S∙20P2S5 (mol%) glass and indium metal as a solid electrolyte and anode, respectively. The all-solid-state battery with a composite cathode containing 0.5 wt% of ethyl cellulose showed an initial discharge capacity of 45 mAhg−1 at 25 °C and maintained 91.7% of the discharge capacity after ten cycles, around 30% higher than that obtained for the battery with the composite cathode without a binder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Sakuda A, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes. J Power Sources 196(16):6735–6741. doi:10.1016/j.jpowsour.2010.10.103

    Article  CAS  Google Scholar 

  2. Han F, Yue J, Fan X, Gao T, Luo C, Ma Z, Suo L, Wang C (2016) High-performance all-solid-state lithium–sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett 16(7):4521–4527. doi:10.1021/acs.nanolett.6b01754

    Article  CAS  Google Scholar 

  3. Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) Design of composite positive electrode in all-solid-state secondary batteries with Li2S-P2S5 glass–ceramic electrolytes. J Power Sources 146(1–2):711–714. doi:10.1016/j.jpowsour.2005.03.161

    Article  CAS  Google Scholar 

  4. Sakuda A, Takeuchi T, Kobayashi H (2016) Electrode morphology in all-solid-state lithium secondary batteries consisting of LiNi1/3Co1/3Mn1/3O2 and Li2S-P2S5 solid electrolytes. Solid State Ionics 285:112–117. doi:10.1016/j.ssi.2015.09.010

    Article  CAS  Google Scholar 

  5. Sakuda A, Hayashi A, Takigawa Y, Higashi K, Tatsumisago M (2013) Evaluation of elastic modulus of Li2S-P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test. J Ceram Soc Jpn 121(1419):946–949. doi:10.2109/jcersj2.121.957

    Article  CAS  Google Scholar 

  6. Yubuchi S, Teragawa S, Aso K, Tadanaga K, Hayashi A, Tatsumisago M (2015) Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries. J Power Sources 293:941–945. doi:10.1016/j.jpowsour.2015.05.093

    Article  CAS  Google Scholar 

  7. Wang YM, Liu ZQ, Zhu XL, Tang YF, Huang FQ (2013) Highly lithium-ion conductive thio-LISICON thin film processed by low-temperature solution method. J Power Sources 224:225–229. doi:10.1016/j.jpowsour.2012.09.097

    Article  CAS  Google Scholar 

  8. Liu ZC, Fu WJ, Payzant EA, Yu X, Wu ZL, Dudney NJ, Kiggans J, Hong KL, Rondinone AJ, Liang CD (2013) Anomalous high ionic conductivity of nanoporous beta-Li3PS4. J Am Chem Soc 135(3):975–978. doi:10.1021/ja3110895

    Article  CAS  Google Scholar 

  9. Rangasamy E, Liu ZC, Gobet M, Pilar K, Sahu G, Zhou W, Wu H, Greenbaum S, Liang CD (2015) An iodide-based Li7P2S8I superionic conductor. J Am Chem Soc 137(4):1384–1387. doi:10.1021/ja508723m

    Article  CAS  Google Scholar 

  10. Teragawa S, Aso K, Tadanaga K, Hayashi A, Tatsumisago M (2014) Preparation of Li2S-P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery. J Power Sources 248:939–942. doi:10.1016/j.jpowsour.2013.09.117

    Article  CAS  Google Scholar 

  11. Park KH, Oh DY, Choi YE, Nam YJ, Han LL, Kim JY, Xin HL, Lin F, Oh SM, Jung YS (2016) Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries. Adv Mater (Weinheim, Ger) 28(9):1874–1883. doi:10.1002/adma.201505008

    Article  CAS  Google Scholar 

  12. Chou SL, Pan Y, Wang JZ, Liu HK, Dou SX (2014) Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys Chem Chem Phys 16(38):20347–20359. doi:10.1039/C4CP02475C

    Article  CAS  Google Scholar 

  13. Hong X, Jin J, Wen Z, Zhang S, Wang Q, Shen C, Rui K (2016) On the dispersion of lithium-sulfur battery cathode materials effected by electrostatic and stereo-chemical factors of binders. J Power Sources 324:455–461. doi:10.1016/j.jpowsour.2016.04.114

    Article  CAS  Google Scholar 

  14. Buqa H, Holzapfel M, Krumeich F, Veit C, Novák P (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources 161(1):617–622. doi:10.1016/j.jpowsour.2006.03.073

    Article  CAS  Google Scholar 

  15. Ohta N, Takada K, Sakaguchi I, Zhang LQ, Ma RZ, Fukuda K, Osada M, Sasaki T (2007) LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem Commun 9(7):1486–1490. doi:10.1016/j.elecom.2007.02.008

    Article  CAS  Google Scholar 

  16. Boulineau S, Courty M, Tarascon J-M, Viallet V (2012) Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 221:1–5. doi:10.1016/j.ssi.2012.06.008

    Article  CAS  Google Scholar 

  17. de Klerk NJJ, Rosłoń I, Wagemaker M (2016) Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: the effect of Li vacancies, halogens, and halogen disorder. Chem Mater 28(21):7955–7963. doi:10.1021/acs.chemmater.6b03630

    Article  Google Scholar 

  18. Yu C, van Eijck L, Ganapathy S, Wagemaker M (2016) Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochim Acta 215:93–99. doi:10.1016/j.electacta.2016.08.081

    Article  CAS  Google Scholar 

  19. Lin Z, Liu Z, Dudney NJ, Liang C (2013) Lithium superionic sulfide cathode for all-solid lithium–sulfur batteries. ACS Nano 7(3):2829–2833. doi:10.1021/nn400391h

    Article  CAS  Google Scholar 

  20. Auvergniot J, Cassel A, Foix D, Viallet V, Seznec V, Dedryvère R (2017) Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: an XPS study. Solid State Ionics 300:78–85. doi:10.1016/j.ssi.2016.11.029

    Article  CAS  Google Scholar 

  21. Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162. doi:10.1021/acs.chemrev.5b00563

    Article  CAS  Google Scholar 

  22. Deiseroth HJ, Kong ST, Eckert H, Vannahme J, Reiner C, Zaiß T, Schlosser M (2008) Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed 47(4):755–758. doi:10.1002/anie.200703900

    Article  CAS  Google Scholar 

  23. Ito S, Nakakita M, Aihara Y, Uehara T, Machida N (2014) A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent. J Power Sources 271:342–345. doi:10.1016/j.jpowsour.2014.08.024

    Article  CAS  Google Scholar 

  24. Liu G, Zheng H, Kim S, Deng Y, Minor AM, Song X, Battaglia VS (2008) Effects of various conductive additive and polymeric binder contents on the performance of a Lithium-ion composite cathode. J Electrochem Soc 155(12):A887–A892. doi:10.1149/1.2976031

    Article  CAS  Google Scholar 

  25. Ludwig B, Zheng Z, Shou W, Wang Y, Pan H (2016) Solvent-free manufacturing of electrodes for lithium-ion batteries. Sci Rep 6:23150. doi:10.1038/srep23150 http://www.nature.com/articles/srep23150#supplementary-information

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by the Japan Science and Technology Agency (JST), Advanced Low Carbon Technology Research and Development Program (ALCA), and Specially Promoted Research for Innovative Next Generation Batteries (SPRING) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataly Carolina Rosero-Navarro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosero-Navarro, N.C., Kinoshita, T., Miura, A. et al. Effect of the binder content on the electrochemical performance of composite cathode using Li6PS5Cl precursor solution in an all-solid-state lithium battery. Ionics 23, 1619–1624 (2017). https://doi.org/10.1007/s11581-017-2106-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2106-x

Keywords

Navigation