Skip to main content

Advertisement

Log in

Structural, thermal properties and chemical durability of aluminosilicate glasses prepared by Bayer red mud

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Two series of glass which are based on the particularity of iron oxide in the Bayer red mud, dolomite, pyrophyllite, quartz powder, fluorite, and industrial Al2O3 were prepared. The structure, thermal properties, and chemical durability of the prepared glasses were investigated. X-ray diffraction patterns showed no peaks of crystallization. Result of Fourier transform infrared shows that the existence of ~992 cm−1 in SF series can be assigned to mixed anion structure of [TO4] (T = Si, Al) tetrahedra. For the AF series samples, the Si-O network gradually depolymerized as the decrease of Fe2O3 when the content of SiO2 remained unchanged. Differential scanning calorimetry analysis shows that, as the content of Si/Fe and Al/Fe increased, the glass-transition temperature of glass approximately showed an increase tendency. From the chemical durability experiment results, the presence of TiO2, Fe2O3, etc. in the Bayer red mud improved the resistance to chemical corrosion (especially in acid and alkali resistance) of the glasses, bringing about corrosion resistance close or be superior to that of E-glass and AR-glass, which can be applied in the preparation of aluminosilicate-based glass fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Agrawal A, Sahu KK, Pandey BD (2004) Solid waste management in non-ferrous industries in India. Resour Conserv Recycl 42:99–120

    Article  Google Scholar 

  2. Peng F, Liang K-M, Shao H, Hu A-M (2005) Nano-crystal glass-ceramics obtained by crystallization of vitrified red mud. Chemosphere 59:899–903

    Article  CAS  Google Scholar 

  3. Yang J, Zhang D, Hou J, He B, Xiao B (2008) Preparation of glass-ceramics from red mud in the aluminium industries. Ceram Int 34:125–130

    Article  CAS  Google Scholar 

  4. Paul A, Youssefi A (1978) Alkaline durability of some silicate glasses containing CaO, FeO and MnO. J Mater Sci 13:97–107

    Article  CAS  Google Scholar 

  5. Alizadeh P, Yekta BE, Gervei A (2004) Effect of Fe2O3 addition on the sinterability and machinability of glass-ceramics in the system MgO–CaO–SiO2–P2O5. J Eur Ceram Soc 24:3529–3533

    Article  CAS  Google Scholar 

  6. Ma L, Brow RK, Ghussn L, Schlesinger ME (2015) Thermal stability of Na2O–FeO–Fe2O3–P2O5 glasses. J Non-Cryst Solids 409:131–138

    Article  CAS  Google Scholar 

  7. Takahashi S, Neuville DR, Takebe H (2015) Thermal properties, density and structure of percalcic and peraluminus CaO–Al2O3–SiO2 glasses. J Non-Cryst Solids 411:5–12

    Article  CAS  Google Scholar 

  8. Yang Z, Liu Z, Song Z, Zhou D, Yin Z, Zhu K, Qiu J (2011) Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses. J Alloys Compd 509:6816–6818

    Article  CAS  Google Scholar 

  9. Qing-Chun YU, Yan CP, Deng Y, Feng YB, Liu DC, Yang B (2015) Effect of Fe2O3 on non-isothermal crystallization of CaO–MgO–Al2O3–SiO2 glass. Trans Nonferrous Metals Soc China 25:2279–2284

    Article  Google Scholar 

  10. Okuno M, Zotov N, Schmücker M, Schneider H (2005a) Structure of SiO2–Al2O3 glasses: combined X-ray diffraction. IR and Raman studies, Journal of Non-Crystalline Solids 351:1032–1038

    Article  CAS  Google Scholar 

  11. Kuryaeva RG (2015) Density properties of glasses of CaO(Na2O)–Al2O3(MgO)–SiO2 system, studied at pressures to 6.0 GPa, in comparison with the properties of similar melts. Solid State Sci 42:52–61

    Article  CAS  Google Scholar 

  12. Sun Y, Zhang Z, Liu L, Wang X (2015) FTIR, Raman and NMR investigation of CaO–SiO2–P2O5 and CaO–SiO2–TiO2–P2O5 glasses. J Non-Cryst Solids 420:26–33

    Article  CAS  Google Scholar 

  13. Lin S-L, Hwang C-S (1996) Structures of CeO2 Al2O3 SiO2 glasses. J Non-Cryst Solids 202:61–67

    Article  CAS  Google Scholar 

  14. Atalay S, Adiguzel HI, Atalay F (2001) Infrared absorption study of Fe2O3–CaO–SiO2 glass ceramics. Mater Sci Eng A 304–306:796–799

    Article  Google Scholar 

  15. ElBatal FH, Azooz MA, Hamdy YM (2009) Preparation and characterization of some multicomponent silicate glasses and their glass–ceramics derivatives for dental applications. Ceram Int 35:1211–1218

    Article  CAS  Google Scholar 

  16. Yu Q-c, Yan C-p, Deng Y, Feng Y-b, Liu D-c, Yang B (2015) Effect of Fe2O3 on non-isothermal crystallization of CaO–MgO–Al2O3–SiO2 glass. Trans Nonferrous Metals Soc China 25:2279–2284

    Article  CAS  Google Scholar 

  17. Clayden NJ, Esposito S, Aronne A, Pernice P (1999) Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses. J Non-Cryst Solids 258:11–19

    Article  CAS  Google Scholar 

  18. Yilmaz G (2012) Structural characterization of glass–ceramics made from fly ash containing SiO2–Al2O3–Fe2O3–CaO and analysis by FT-IR–XRD–SEM methods. J Mol Struct 1019:37–42

    Article  CAS  Google Scholar 

  19. Bingham PA, Hand RJ, Forder SD (2006) Doping of iron phosphate glasses with Al2O3, SiO2 or B2O3 for improved thermal stability. Mater Res Bull 41:1622–1630

    Article  CAS  Google Scholar 

  20. Jóna KNE, Plško A, Ondrušová D, Šimon P (2004) Thermal properties of oxide. J Therm Anal Calorim 76:85–90

    Article  Google Scholar 

  21. Barbieri L, Karamanov A, Corradi A, Lancellotti I, Pelino M, Rincon JM (2008) Structure, chemical durability and crystallization behavior of incinerator-based glassy systems. J Non-Cryst Solids 354:521–528

    Article  CAS  Google Scholar 

  22. Shelby JE (1983) Thermal expansion of alkali borate glasses. J Am Ceram Soc 66:225–227

    Article  CAS  Google Scholar 

  23. Okuno M, Zotov N, Schmücker M, Schneider H (2005b) Structure of SiO2–Al2O3 glasses: combined X-ray diffraction, IR and Raman studies. J Non-Cryst Solids 351:1032–1038

    Article  CAS  Google Scholar 

  24. Wallenberger FT, Hicks RJ, Bierhals AT (2004) Design of environmentally friendly fiberglass compositions: ternary eutectic SiO2–Al2O3–CaO compositions, structures and properties. J Non-Cryst Solids 349:377–387

    Article  CAS  Google Scholar 

  25. Sheng J, Luo S, Tang B (1999) The leaching behavior of borate waste glass SL-1. Waste Manag 19:401–407

    Article  CAS  Google Scholar 

  26. Paul A, Zaman MS (1978) The relative influences of Al2O3 and Fe2O3 on the chemical durability of silicate glasses at different pH values. J Mater Sci 13:1499–1502

    Article  CAS  Google Scholar 

  27. Paul A (1977) Chemical durability of glasses; a thermodynamic approach. J Mater Sci 12:2246–2268

    Article  CAS  Google Scholar 

  28. Rahimi RA, Sadrnezhaad SK, Raisali G (2009) Chemical durability of lead silicate glass in HNO3, HCl and H2SO4 aqueous acid solutions. J Non-Cryst Solids 355:169–174

    Article  CAS  Google Scholar 

  29. Conradt R (2001) A proposition for an improved theoretical treatment of the corrosion of multi-component glasses. J Nucl Mater 298:19–26

    Article  CAS  Google Scholar 

  30. Garcia-Lodeiro I, Fernández-Jimenez A, Pena P, Palomo A (2014) Alkaline activation of synthetic aluminosilicate glass. Ceram Int 40:5547–5558

    Article  CAS  Google Scholar 

  31. Gutnikov SI, Manylov MS, Lipatov YV, Lazoryak BI, Pokholok KV (2013) Effect of the reduction treatment on the basalt continuous fiber crystallization properties. J Non-Cryst Solids 368:45–50

    Article  CAS  Google Scholar 

  32. Sebdani MM, Mauro JC, Jensen LR, Smedskjaer MM (2015a) Structure-property relations in calcium aluminate glasses containing different divalent cations and SiO2. J Non-Cryst Solids 427:160–165

    Article  CAS  Google Scholar 

  33. Sebdani MM, Mauro JC, Smedskjaer MM (2015b) Effect of divalent cations and SiO2 on the crystallization behavior of calcium aluminate glasses. J Non-Cryst Solids 413:20–23

    Article  CAS  Google Scholar 

  34. Smedskjaer MM, Youngman RE, Mauro JC (2013) Impact of ZnO on the structure and properties of sodium aluminosilicate glasses: comparison with alkaline earth oxides. J Non-Cryst Solids 381:58–64

    Article  CAS  Google Scholar 

  35. Stefanovsky SV, Stefanovsky OI, Kadyko MI, Presniakov IA, Myasoedov BF (2015) The effect of Fe2O3 substitution for Al2O3 on the phase composition and structure of sodium–aluminum–iron phosphate glasses. J Non-Cryst Solids 425:138–145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge for the support by National Natural Science Foundation (No. 51172093, 51372098, 51042009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlong Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Qu, Y., Lu, Y. et al. Structural, thermal properties and chemical durability of aluminosilicate glasses prepared by Bayer red mud. Ionics 23, 2091–2101 (2017). https://doi.org/10.1007/s11581-017-2045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2045-6

Key words

Navigation