Skip to main content
Log in

The effect of oxygen and water vapor partial pressures on the total conductivity of BaCe0.7Zr0.1Y0.2O3–δ

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The effect of oxygen and water vapor partial pressure on the total conductivity of the proton-conducting BaCe0.7Zr0.1Y0.2O3–δ material is investigated in the present work. Single-phase and dense ceramic materials have been successfully obtained using the citrate–nitrate synthesis method. The contributions of partial conductivities (hole, oxygen-ionic, protonic) are evaluated based on electrical and emf measurements. At 900 °C in air atmosphere, ionic and hole conductivities almost equivalently contribute to the total conductivity, while in reducing temperatures, the transport of the studied material becomes ionic; the predominant protonic transport (t H ≈ 1) realizes under wet hydrogen atmospheres at temperatures below 700 °C. Based on the measurements of total conductivity as a function of water vapor partial pressure, it is found that the increase of conductivity in reducing atmospheres is associated with the growth of proton conductivity. A non-monotonic change of total conductivity in oxidizing atmospheres is caused by the competing effects, namely decreasing the hole conductivity and increasing the protonic one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Malavasi L, Fisher CAJ, Islam MS (2010) Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev 39:4370–4387. doi:10.1039/b915141a

    Article  CAS  Google Scholar 

  2. Bi L, Traversa E (2015) Steam electrolysis by proton-conducting solid oxide electrolysis cells (SOECs) with chemically stable BaZrO3-based electrolytes. ECS Trans 68:3387–3393. doi:10.1149/06801.3387ecst

    Article  Google Scholar 

  3. Hübert T, Boon-Brett L, Black G, Banach U (2011) Hydrogen sensors—a review. Sens Actuators B: Chem 157:329–352. doi:10.1016/j.snb.2011.04.070

    Article  Google Scholar 

  4. Tao Z, Yan L, Qiao J, Wang B, Zhang L, Zhang J (2015) A review of advanced proton-conducting materials for hydrogen separation. Progr Mater Sci 74:1–50. doi:10.1016/j.pmatsci.2015.04.002

    Article  CAS  Google Scholar 

  5. Afif A, Radenahmad N, Cheok Q, Shams S, Kim JH, Azad AK (2016) Ammonia-fed fuel cells: a comprehensive review. Renew Sust Energ Rev 60:822–835. doi:10.1016/j.rser.2016.01.120

    Article  CAS  Google Scholar 

  6. Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z, Liu M (2011) Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ. Science 326:126–129. doi:10.1126/science.1174811

    Article  Google Scholar 

  7. Takahashi T, Iwahara H (1980) Protonic conduction in perovskite type oxide solid solutions. Rev Chim Mineral 17:243–253

    CAS  Google Scholar 

  8. Iwahara H, Esaka T, Uchida H, Maeda N (1981) Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3–4:359–363. doi:10.1016/0167-2738(81)90113-2

    Article  Google Scholar 

  9. Yaroslavtsev AB (2016) Solid electrolytes: main prospects of research and development. Russ Chem Rev 85:1255–1276. doi:10.1070/RCR4634

    Article  Google Scholar 

  10. Marrony M (2016) Proton-conducting ceramics. From fundamentals to applied research. CRC Press, Boca Raton

    Google Scholar 

  11. Bu J, Jonsson PG, Zhao Z (2016) Transport properties of BaZr0.5Ce0.3Y0.2O3–δ proton conductor prepared by spark plasma sintering. Ceram Int 42:4393–4399. doi:10.1016/j.ceramint.2015.11.121

    Article  CAS  Google Scholar 

  12. Scholten MJ, Schoonman J, van Miltenburg JC, Oonk HAJ (1993) Synthesis of strontium and barium cerate and their reaction with carbon dioxide. Solid State Ionics 61:83–91. doi:10.1016/0167- 2738(93)90338-4

    Article  CAS  Google Scholar 

  13. Lacz A (2016) Effect of microstructure on chemical stability and electrical properties of BaCe0.9Y0.1O3−δ. Ionics 22:1405–1414. doi:10.1007/s11581-016-1665-6

    Article  CAS  Google Scholar 

  14. Matsumoto H, Kawasaki Y, Ito N, Enoki M, Ishihara T (2007) Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants. Electrochem Solid-State Lett 10:B77–B80. doi:10.1149/1.2458743

    Article  CAS  Google Scholar 

  15. Bi L, Traversa E (2014) Synthesis strategies for improving the performance of doped-BaZrO3 materials in solid oxide fuel cell applications. J Mater Res 29:1–15. doi:10.1557/jmr.2013.205

    Article  CAS  Google Scholar 

  16. Goncalves MD, Maram PS, Navrotsky A, Muccillo R (2016) Effect of synthesis atmosphere on the proton conductivity of Y-doped barium zirconate solid electrolytes. Ceram Int 42:13689–13696. doi:10.1016/j.ceramint.2016.05.167

    Article  CAS  Google Scholar 

  17. Tarasova N, Animitsa I (2015) Protonic transport in oxyfluorides Ba2InO3F and Ba3In2O5F2 with Ruddlesden–Popper structure. Solid State Ionics 275:53–57. doi:10.1016/j.ssi.2015.03.025

    Article  CAS  Google Scholar 

  18. Li X, Ihara M (2015) Ionic conduction and power generation characteristics of Pr-doped Ba2In2O5 for proton-conducting SOFCs. J Electrochem Soc 162:927–938. doi:10.1149/2.1021508jes

    Article  Google Scholar 

  19. Stroeva AYu, Gorelov VP, Kuz’min AV (2016) Conductivity of perovskites La0.9Sr0.1Sc1–xFexO3–α (x = 0.003–0.47) in oxidizing and reducing atmospheres. Phys Solid State 58:1521–1527. doi:10.1134/S1063783416080278

    Article  Google Scholar 

  20. Okuyama Y, Kozai T, Ikeda S, Matsuka M, Sakai T, Matsumoto H (2014) Incorporation and conduction of proton in Sr-doped LaMO3 (M = Al, Sc, In, Yb, Y). Electrochim Acta 125:443–449. doi:10.1016/j.electacta.2014.01.113

    Article  CAS  Google Scholar 

  21. Magrasó A, Fontaine M-L, Larring Y, Bredesen R, Syvertsen GE, Lein HL, Grande T, Huse M, Strandbakke R, Haugsrud R, Norby T (2011) Development of proton conducting SOFCs based on LaNbO4 electrolyte-status in Norway. Fuel Cells 11:17–25. doi:10.1002/fuce.201000052

    Article  Google Scholar 

  22. Cao Y, Duan N, Yan D (2016) Structural characterization and electrical conductivity of the Ca0.01La0.99–xSmxNbO4–δ solid series. J Solid State Chem 237:248–253. doi:10.1016/j.jssc.2016.02.034

    Article  CAS  Google Scholar 

  23. Cao Y, Duan N, Jian L, Evans A, Haugsrud R (2016) Effect of Nb doping on hydration and conductivity of La27W5O55.5−δ. J Am Ceram Soc 99:3309–3316. doi:10.1111/jace.14346

    Article  CAS  Google Scholar 

  24. Escolástico S, Kjølseth C, Serra JM (2016) Catalytic activation of ceramic H2 membranes for CMR processes. J Membr Sci 517:57–63. doi:10.1016/j.memsci.2016.06.017

    Article  Google Scholar 

  25. Zhu Z, Liu B, Shen J, Lou Y, Ji Y (2016) La2Ce2O7: a promising proton ceramic conductor in hydrogen economy. J Alloys Compd 659:232–239. doi:10.1016/j.jallcom.2015.11.041

    Article  CAS  Google Scholar 

  26. Huang Z, Duan H, Liu J, Zhang H (2016) Preparation of lanthanum cerate powders via a simple molten salt route. Ceram Int 42:10482–10486. doi:10.1016/j.ceramint.2016.03.063

    Article  CAS  Google Scholar 

  27. Medvedev DA, Lyagaeva JG, Gorbova EV, Demin AK, Tsiakaras P (2016) Advanced materials for SOFC application: strategies for the development of highly conductive and stable solid oxide proton electrolytes. Progr Mater Sci 75:38–79. doi:10.1016/j.pmatsci.2015.08.001

    Article  CAS  Google Scholar 

  28. Reddy GS, Bauri R (2016) Y and In-doped BaCeO3 BaZrO3 solid solutions: chemically stable and easily sinterable proton conducting oxides. J Alloys Compd 668:1039–1046. doi:10.1016/j.jallcom.2016.07.154

    Article  Google Scholar 

  29. Katahira K, Kohchi Y, Shimura T, Iwahara H (2000) Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 138:91–98. doi:10.1016/S0167-2738(00)00777-3

    Article  CAS  Google Scholar 

  30. Fan L, Xie H, Su PC (2016) Spray coating of dense proton-conducting BaCe0.7Zr0.1Y0.2O3 electrolyte for low temperature solid oxide fuel cells. Int J Hydr Energy 41:6516–6525. doi:10.1016/j.ijhydene.2016.03.001

    Article  CAS  Google Scholar 

  31. Zhu Z, Hou J, He W, Liu W (2016) High-performance Ba(Zr0.1Ce0.7Y0.2)O3−δ asymmetrical ceramic membrane with external short circuit for hydrogen separation. J Alloys Compd 660:231–234. doi:10.1016/j.jallcom.2015.11.065

    Article  CAS  Google Scholar 

  32. Wang J, Zhou J, Wang T, Chen G, Wu K, Cheng Y (2016) Decreasing the polarization resistance of LaSrCoO4 cathode by Fe substitution for Ba(Zr0.1Ce0.7Y0.2)O3 based protonic ceramic fuel cells. J Alloys Compd 689:581–586. doi:10.1016/j.jallcom.2016.07.289

    Article  CAS  Google Scholar 

  33. Zuo C, Zha S, Liu M, Hatano M, Uchiyama M (2006) Ba(Zr0.1Ce0.7Y0.2)O3–δ as an electrolyte for low-temperature solid-oxide fuel cells. Adv Mater 18:3318–3320. doi:10.1002/adma.200601366

    Article  CAS  Google Scholar 

  34. Medvedev D, Murashkina A, Pikalova E, Demin A, Podias A, Tsiakaras P (2014) BaCeO3: materials development, properties and application. Progr Mater Sci 60:72–129. doi:10.1016/j.pmatsci.2013.08.001

    Article  CAS  Google Scholar 

  35. Zhou X, Liu L, Zhen J, Zhu S, Li B, Sun K, Wang P (2011) Ionic conductivity, sintering and thermal expansion behaviors of mixed ion conductor BaZr0.1Ce0.7Y0.1Yb0.1O3−δ prepared by ethylene diaminetetra acetic acid assisted glycine nitrate process. J Power Sources 196:5000–5006. doi:10.1016/j.jpowsour.2011.01.092

    Article  CAS  Google Scholar 

  36. Dippon M, Babiniec SM, Ding H, Ricote S, Sullivan NP (2016) Exploring electronic conduction through BaCexZr0.9−xY0.1O3−δ proton-conducting ceramics. Solid State Ionics 286:117–121. doi:10.1016/j.ssi.2016.01.029

    Article  CAS  Google Scholar 

  37. Kochetova N, Animitsa I, Medvedev D, Demin A, Tsiakaras P (2016) Recent activity in the development of proton-conducting oxides for high-temperature application. RSC Adv 6:73222–73268. doi:10.1039/c6ra13347a

    Article  CAS  Google Scholar 

  38. Medvedev DA, Gorbova EV, Demin AK, Antonov BD (2011) Structure and electric properties of BaCe0.77−xZrxGd0.2Cu0.03O3−δ. Russ J Electrochem 47:1404–1410. doi:10.1134/S1023193511090138

    Article  CAS  Google Scholar 

  39. Gorelov VP, Balakireva VB, Kuz’min AV (2010) Ionic, proton, and oxygen conductivities in the BaZr1−xYxO3−α system (x = 0.02 − 0.15) in humid air. Russ J Electrochem 46:890–895. doi:10.1134/S1023193510080057

    Article  CAS  Google Scholar 

  40. Kreuer KD (2003) Proton-conducting oxides. Annu Rev Mater Res 33:333–359. doi:10.1146/annurev.matsci.33.022802.091825

    Article  CAS  Google Scholar 

  41. Shrivastava UN, Duncan KL, Chung JN (2012) Experimentally validated numerical modeling of Eu doped SrCeO3 membrane for hydrogen separation. Int J Hydr Energy 37:15350–15358. doi:10.1016/j.ijhydene.2012.07.061

    Article  CAS  Google Scholar 

  42. Ji H-I, Kim B-K, Yu JH, Choi S-M, Kim H-R, Son J-W, Lee H-W, Lee J-H (2011) Three dimensional representations of partial ionic and electronic conductivity based on defect structure analysis of BaZr0.85Y0.15O3−δ. Solid State Ionics 203:9–17. doi:10.1016/j.ssi.2011.09.016

    Article  CAS  Google Scholar 

  43. Song S-J, Wachsman ED, Dorris SE, Balachandran U (2003) Electrical properties of p-type electronic defects in the protonic conductor SrCe0.95Eu0.05O3−δ. J Electrochem Soc 150:790–795. doi:10.1149/1.1574031

    Article  Google Scholar 

  44. Medvedev DA, Gorbova EV, Demin AK, Tsiakaras P (2014) Conductivity of Gd-doped BaCeO3 protonic conductor in H2–H2O–O2 atmospheres. Int J Hydr Energy 39:21547–21552. doi:10.1016/j.ijhydene.2014.09.019

    Article  CAS  Google Scholar 

  45. Kuz’min AV, Balakireva VB, Plaksin SV, Gorelov VP (2009) Total and hole conductivity in the BaZr1–xYxO3–α system (x = 0.02 − 0.20) in oxidizing atmosphere. Russ J Electrochem 45:1351–1357. doi:10.1134/S1023193509120064

    Article  Google Scholar 

  46. Zhu Z, Sun W, Shi Z, Liu W (2016) Proton-conducting solid oxide fuel cells with yttrium-doped barium zirconate electrolyte films sintered at reduced temperatures. J Aaloys Compd 658:716–720. doi:10.1016/j.jallcom.2015.10.275

    Article  CAS  Google Scholar 

  47. Kalyakin A, Volkov A, Lyagaeva J, Medvedev D, Demin A, Tsiakaras P (2016) Combined amperometric and potentiometric hydrogen sensors based on BaCe0.7Zr0.1Y0.2O3−δ proton-conducting ceramic. Sens Actuators B: Chem 231:175–182. doi:10.1016/j.snb.2016.03.017

    Article  CAS  Google Scholar 

  48. Song S-J, Wachsman ED, Dorris SE, Balachandran U (2002) Defect chemistry modeling of high-temperature proton-conducting cerates. Solid State Ionics 149:1–10. doi:10.1016/S0167-2738(02)00147-9

    Article  CAS  Google Scholar 

  49. Yan D, Zhang C, Liang L, Li K, Jia L, Pu J, Jian L, Li X, Zhang T (2016) Degradation analysis and durability improvement for SOFC 1-cell stack. Appl Energy 175:414–420. doi:10.1016/j.apenergy.2016.04.094

    Article  Google Scholar 

  50. Chen K, Jiang SP (2016) Review—materials degradation of solid oxide electrolysis cells. J Electrochem Soc 163:F3070–F3083. doi:10.1149/2.0101611jes

    Article  Google Scholar 

Download references

Acknowledgements

The characterizations of the ceramic materials were carried out at the Shared Access Center “Composition of Compounds” of the Institute of High Temperature Electrochemistry (http://www.ihte.uran.ru/?page_id=3142).

The present work is supported by the Russian Science Foundation (project no. 16-19-00104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Medvedev or P. Tsiakaras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, N., Lyagaeva, J., Kasyanova, A. et al. The effect of oxygen and water vapor partial pressures on the total conductivity of BaCe0.7Zr0.1Y0.2O3–δ . Ionics 23, 795–801 (2017). https://doi.org/10.1007/s11581-016-1961-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1961-1

Keywords

Navigation