Skip to main content

Advertisement

Log in

Double-layer capacitance for a charged surface

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Supercapacitors are a key technology for the energy storage requirements of future energy systems. A primary problem of supercapacitors is their limited energy density, but new electrode materials and electrode designs might help to overcome this limitation. Numerical modelling can be a valuable tool in this challenge, although realistic ab initio calculations are usually very cumbersome. In this work, we show that electric double-layer capacitors can be modelled to good accuracy by a coarse-grained sampling of the electrolyte’s configuration space rather than using full molecular dynamics simulations. This saves considerable computation time, and it allows for processing more materials and more complicated systems with modest computational effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Béguin F, Frackowiak E (eds) (2013) Supercapacitors: materials, systems and applications, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  2. Kohn W, Sham LJ (1965) Phys Rev 140(4A):A1133. doi:10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  3. Makov G, Payne MC (1995) Phys Rev B 51:4014. doi:10.1103/PhysRevB.51.4014

    Article  CAS  Google Scholar 

  4. Ando Y, Gohda Y, Tsuneyuki S (2013) Chem Phys Lett 556:9. doi:10.1016/j.cplett.2012.11.062

    Article  CAS  Google Scholar 

  5. Otani M, Sugino O (2006) Phys Rev B 73(11):115407

    Article  Google Scholar 

  6. Lany S, Zunger A (2009) Model Simul Mater Sci Eng 17(8):084002

    Article  Google Scholar 

  7. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, Gironcoli Sd, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys Condensed Matter 21(39):395502. doi:10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  8. Bard A, Faulkner L, Leddy J, Zoski C (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley, New York

    Google Scholar 

  9. Bockris J, Reddy A (2001) Modern electrochemistry 2B: electrodics in chemistry, engineering, biology and environmental science, vol 2. Springer Science and Business Media, New York

    Google Scholar 

  10. Masliyah J, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley, New York

    Book  Google Scholar 

  11. Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dulak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Mller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Hkkinen H, Madsen GKH, Nieminen RM, Nrskov JK, Puska M, Rantala TT, Schitz J, Thygesen KS, Jacobsen KW (2010) J. Phys.: Condensed Matter 22(25). doi:10.1088/0953-8984/22/25/253202

  12. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865. doi:10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  13. Formaro L, Trasatti S (1968) Anal Chem 40(7):1060. doi:10.1021/ac60263a003

    Article  CAS  Google Scholar 

  14. Lockett V, Horne M, Sedev R, Rodopoulos T, Ralston J (2010) Phys Chem Chem Phys 12:12499. doi:10.1039/C0CP00170H

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Institute for Theoretical Physics (NITheP), the Mandelstam Institute for Theoretical Physics (MITP), the Materials Physics Research Institute (MPRI), the Materials for Energy Research Group (MERG) and the DST-NRF Centre of Excellence in Strong Materials (CoE-SM) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Quandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warmbier, R., Malaza, N. & Quandt, A. Double-layer capacitance for a charged surface. Ionics 23, 331–335 (2017). https://doi.org/10.1007/s11581-016-1813-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1813-z

Keywords

Navigation