Skip to main content
Log in

Polymeric Co(salen) scaffold for the electrochemical determination of acetaminophen in pharmaceutical sample

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A polymeric Co(salen) (where salen = N,N′-bis(salicylidene)ethylenediamine) electrochemical sensing scaffold was prepared by electropolymerization of Co(salen) on glassy carbon (GC) electrode employing potentiodynamic method. The sensing scaffold, represented as GC/poly[CoII-S], has notable activity toward the electrochemical oxidation of acetaminophen in 0.1 M pH 7.0 phosphate buffer solution. Polymeric films with porous or net-like structures are normally expected to function as excellent platforms for electrochemical reactions. Accordingly in the present study, GC/poly[CoII-S] scaffold displays a perfect linear relationship for acetaminophen determination in the range of 0.5 to 5000 μM. The sensitivity and detection limit are calculated as 71 μA mM−1 and 0.3 μM, respectively. This new sensing scaffold displays high stability for more than 40 days. The reproducibility is measured based on the response of different scaffolds for 12 experiments which shows a relative standard deviation of 3.9 %. Further, GC/poly[CoII-S] is successfully applied for acetaminophen determination in a real sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Boopathi M, Won MS, Shim YB (2004) A sensor for acetaminophen in a blood medium using a Cu(II)-conducting polymer complex modified electrode. Anal Chim Acta 512:191–197

    Article  CAS  Google Scholar 

  2. Mazloum-Ardakani M, Beitollahi H, Amini MK, Mirkhalaf F, Abdollahi-Alibeik M (2010) New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode. Sen Actuators B 151:243–249

    Article  CAS  Google Scholar 

  3. Li M, Jing L (2007) Electrochemical behavior of acetaminophen and its detection on the PANI–MWCNTs composite modified electrode. Electrochim Acta 52:3250–3257

    Article  CAS  Google Scholar 

  4. Babu RS, Prabhu P, Anuja S, Narayanan SS (2012) Electrocatalytic oxidation of acetaminophen using 1-ethyl-3-methylimidazolium tetrafluoroborate-nickel hexacyanoferrate nanoparticles gel modified electrode. J Chem Pharm Res 4:3592–3600

    Google Scholar 

  5. Bui MPN, Li CA, Han KN, Pham XH, Seong GH (2012) Determination of acetaminophen by electrochemical co-deposition of glutamic acid and gold nanoparticles. Sensors Actuators B Chem 174:318–324

    Article  CAS  Google Scholar 

  6. Razmi H, Habibi E (2010) Amperometric detection of acetaminophen by an electrochemical sensor based on cobalt oxide nanoparticles in a flow injection system. Electrochim Acta 55:8731–8737

    Article  CAS  Google Scholar 

  7. Ensafi AA, Karimi-Maleh H, Mallakpour S, Hatami M (2011) Simultaneous determination of N-acetylcysteine and acetaminophen by voltammetric method using N-(3,4-dihydroxyphenethyl)-3,5-dinitrobenzamide modified multiwall carbon nanotubes paste electrode. Sensors Actuators B Chem 155:464–472

    Article  CAS  Google Scholar 

  8. Szostak R, Mazurek S (2002) Quantitative determination of acetylsalicylic acid and acetaminophen in tablets by FT-Raman spectroscopy. Analyst 127:144–148

    Article  CAS  Google Scholar 

  9. Ziémons E, Mantanus J, Lebrun P, Rozet E, Evrard B (2010) Hubert P acetaminophen determination in low-dose pharmaceutical syrup by NIR spectroscopy. J Pharma Biomed Anal 53:510–516

    Article  Google Scholar 

  10. Ameer B, Greenblatt DJ, Divoll M, Abernethy DR, Shargel L (1981) High-performance liquid chromatographic determination of acetaminophen in plasma: single-dose pharmacokinetic studies. J Chromatogr B 226:224–230

    Article  CAS  Google Scholar 

  11. Vertzoni MV, Archontaki HA, Galanopoulou P (2003) Development and optimization of a reversed-phase high-performance liquid chromatographic method for the determination of acetaminophen and its major metabolites in rabbit plasma and urine after a toxic dose. J Pharm Biomed Anal 32:487–493

    Article  CAS  Google Scholar 

  12. Bales J, Sadler P, Nicholson J, Timbrell J (1984) Urinary excretion of acetaminophen and its metabolites as studied by proton NMR spectroscopy. Clin Chem 30:1631–1636

    CAS  Google Scholar 

  13. Moreira AB, Oliveira HPM, Atvars TDZ, Dias ILT, Neto GO, Zagatto EAG, Kubota LT (2005) Direct determination of paracetamol in powdered pharmaceutical samples by fluorescence spectroscopy. Anal Chim Acta 539:257–261

    Article  CAS  Google Scholar 

  14. Pal M, Ganesan V (2012) Electrocatalytic activity of cobalt Schiff base complex immobilized silica materials towards oxygen reduction and hydrazine oxidation. Catal Sci Tech 2:2383–2388

    Article  CAS  Google Scholar 

  15. Sonkar P, Ganesan V (2015) Synthesis and characterization of silver nanoparticle-anchored amine-functionalized mesoporous silica for electrocatalytic determination of nitrite. J Solid State Electrochem 19:2107–2115

    Article  CAS  Google Scholar 

  16. Huang SS, Tang H, Li BF (1998) Electrochemistry of electropolymerized tetra (p-aminophenyl)porphyrin nickel film electrode and catalytic oxidation of acetaminophen. Microchim Acta 128:37–42

    Article  CAS  Google Scholar 

  17. Rastogi PK, Ganesan V, Krishnamoorthi S (2014) Palladium nanoparticles incorporated polymer-silica nanocomposite based electrochemical sensing platform for nitrobenzene detection. Electrochim Acta 147:442–450

    Article  CAS  Google Scholar 

  18. Kumar SA, Tang CF, Chen SM (2008) Electroanalytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine. Talanta 76:997–1005

    Article  CAS  Google Scholar 

  19. Azad UP, Ganesan V (2010) Influence of metal nanoparticles on the electrocatalytic oxidation of glucose by poly(NiIIteta) modified electrodes. Electroanalysis 22:575–583

    Article  CAS  Google Scholar 

  20. Patti A, Pedotti S, Ballistreri FP, Sfrazzetto GT (2009) Synthesis and characterization of some chiral metal-salen complexes bearing a ferrocenophane substituent. Molecules 14:4312–4325

    Article  CAS  Google Scholar 

  21. Cozzi PG (2004) Metal–Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33:410–421

    Article  CAS  Google Scholar 

  22. Räisänen MT, de Almeida P, Meinander K, Kemell M, Mutikainen I, Leskelä M, Repo T (2008) Cobalt salen functionalised polycrystalline gold surfaces. Thin Solid Films 516:2948–2956

    Article  Google Scholar 

  23. Lu J, Ju J, Bo X, Wang H, Guo L (2013) Cobalt(II) Schiff base/large mesoporous carbon composite film modified electrode as electrochemical biosensor for hydrogen peroxide and glucose. Electroanalysis 25:2531–2538

    Article  CAS  Google Scholar 

  24. Okada T, Arimura N, Ono C, Yuasa M (2005) Electro-oxidation of methanol on mixed catalysts based on platinum and organic metal complexes in acidic media. Electrochim Acta 51:1130–1139

    Article  CAS  Google Scholar 

  25. Foley MP, Du P, Griffith KJ, Karty JA, Mubarak MS, Raghavachari K, Peters DG (2010) Electrochemistry of substituted salen complexes of nickel(II): nickel(I)-catalyzed reduction of alkyl and acetylenic halides. J Electroanal Chem 647:194–203

    Article  CAS  Google Scholar 

  26. Du J, Cheng F, Wang S, Zhang T, Chen J (2014) M(Salen)-derived nitrogen-doped M/C (M = Fe, Co, Ni) porous nanocomposites for electrocatalytic oxygen reduction. Sci Rep. doi:10.1038/srep04386

    Google Scholar 

  27. Huber A, Müller L, Elias H, Klement R, Valko M (2005) Cobalt(II) complexes with substituted salen-type ligands and their dioxygen affinity in N,N-dimethylformamide at various temperatures. Eur J Inorg Chem 2005:1459–1467

    Article  Google Scholar 

  28. Walter MG, Wamser CC (2010) Synthesis and characterization of electropolymerized nanostructured aminophenylporphyrin films. J Phys Chem C 114:7563–7574

    Article  CAS  Google Scholar 

  29. Júnior GC, Silva APS, Guinesi LS (2004) Synthesis, characterization and electropolymerization of a new polypyrrole iron(II) Schiff-base complex. Polyhedron 23:1953–1960

    Article  Google Scholar 

  30. Zhou Y, Hu L, Grüner G (2006) A method of printing carbon nanotube thin films. Appl Phys Lett 88:123109

    Article  Google Scholar 

  31. Zhou XF, Liu J (2012) Co (salen)-catalysed oxidation of synthetic lignin-like polymer: Co (salen) effects. Hem Ind 66:685–692

    Article  CAS  Google Scholar 

  32. Boettcher A, Elias H, Jaeger EG, Langfelderova H, Mazur M, Mueller L, Paulus H, Pelikan P, Rudolph M, Valko M (1993) Comparative study on the coordination chemistry of cobalt(II), nickel(II), and copper(II) with derivatives of salen and tetrahydrosalen: metal-catalyzed oxidative dehydrogenation of the carbon-nitrogen bond in coordinated tetrahydrosalen. Inorg Chem 32:4131–4138

    Article  CAS  Google Scholar 

  33. G-d L, Z-q L, S-s H, Shen GL, Yu RQ (2000) electro-catalytic oxidation of ascorbic acid at a cobalt-salen polymer modified electrode and analytical applications. Anal Lett 33:175–192

    Article  Google Scholar 

  34. Mukherjee P, Biswas C, Drew MG, Ghosh A (2007) Structural variations in Ni (II) complexes of salen type di-Schiff base ligands. Polyhedron 26:3121–3128

    Article  CAS  Google Scholar 

  35. Murphy EF, Schmid L, Bürgi T, Maciejewski M, Baiker A, Günther D, Schneider M (2001) Nondestructive sol-gel immobilization of metal (salen) catalysts in silica aerogels and xerogels. Chem Mater 13:1296–1304

    Article  CAS  Google Scholar 

  36. Suzuki M, Ishiguro T, Kozuka M, Nakamoto K (1981) Resonance Raman spectra, excitation ‘ profiles, and infrared spectra of [N, N′-ethylenebis (salicylideniminato)] cobalt (II) in the solid state. Inorg Chem 20:1993–1996

    Article  CAS  Google Scholar 

  37. Połtowicz J, Pamin K, Tabor E, Haber J, Adamski A, Sojka Z (2006) Metallosalen complexes immobilized in zeolite NaX as catalysts of aerobic oxidation of cyclooctane. Appl Catal A 29:9235–9242

    Google Scholar 

  38. Vafazadeh R, Bagheri M (2015) Kinetics and mechanism of the ligand exchange reaction between tetradentate Schiff base N, N′-ethylen-bis (salicylaldimine) and Ni (N, N′-propylen-bis (salicylaldimine)). S Afr J Chem 68:21–26

    Article  CAS  Google Scholar 

  39. Hipp CJ, Baker WA (1970) Electronic and circular dichroism spectra of some tetradentate Schiff base complexes of cobalt(II). J Am Chem Soc 92:792–798

    Article  CAS  Google Scholar 

  40. Kingsborough RP, Swager TM (1998) Electroactivity enhancement by redox matching in cobalt salen–based conducting polymers. Adv Mater 10:1100–1104

    Article  CAS  Google Scholar 

  41. Hjelm J, Handel RW, Hagfeldt A, Constable EC, Housecroft CE, Forster RJ (2005) Conducting polymers containing in-chain metal centers: electropolymerization of oligothienyl-substituted {M (tpy) 2} complexes and in situ conductivity studies, M = Os (II), Ru (II). Inorg Chem 44:1073–1081

    Article  CAS  Google Scholar 

  42. Sundramoorthy AK, Wang Y, Wang J, Che J, Thong YX, Lu ACW, Chan-Park MB (2015) Lateral assembly of oxidized graphene flakes into large-scale transparent conductive thin films with a three-dimensional surfactant 4-sulfocalix [4] arene. Sci Rep 5.

  43. Khang D, Kim SY, Liu-Snyder P, Palmore GTR, Durbin SM, Webster TJ (2007) Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy. Biomaterials 28:4756–4768

    Article  CAS  Google Scholar 

  44. Klein LJ, Alleman KS, Peters DG, Karty JA, Reilly JP (2000) Catalytic reduction of ethyl chloroacetate by cobalt(I) salen electrogenerated at vitreous carbon cathodes. J Electroanal Chem 481:24–33

    Article  CAS  Google Scholar 

  45. Korfhage KM, Ravichandran K, Baldwin RP (1984) Phthalocyanine-containing chemically modified electrodes for electrochemical detection in liquid chromatography/flow injection systems. Anal Chem 56:1514–1517

    Article  CAS  Google Scholar 

  46. Azad UP, Ganesan V (2014) Tris(4,4′-dimethyl-2,2′-bipyridine)iron(II)-exchanged Nafion for arsenite determination in water samples. Chem Electro Chem 1:379–383

    Google Scholar 

  47. Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications-second edition. Wiley, New York

    Google Scholar 

  48. Ward KR, Lawrence NS, Hartshorne RS, Compton RG (2011) Cyclic voltammetry of the EC′ mechanism at hemispherical particles and their arrays: the split wave. The J Phys Chem 115:11204–11215

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank CSIR (01/(2708)/13/EMR-II) and UGC (42-271/2013 (SR)), New Delhi, for financial support. PKS acknowledges RGNF for a fellowship. We are grateful to Prof. O. N. Srivastava for SEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vellaichamy Ganesan.

Electronic supplementary material

ESM 1

(PDF 1876 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonkar, P.K., Ganesan, V. & Prajapati, A. Polymeric Co(salen) scaffold for the electrochemical determination of acetaminophen in pharmaceutical sample. Ionics 22, 1741–1749 (2016). https://doi.org/10.1007/s11581-016-1699-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1699-9

Keywords

Navigation