Skip to main content
Log in

Influence of K2Ti6O13 on dielectric and barrier properties of polymer

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polymer composite comprising polyvinylidene fluoride (PVDF) and potassium hexatitante (K2Ti6O13) was synthesized by solution casting. The effect of K2Ti6O13 on surface, thermal, and electrical properties of polymer composite were investigated. The addition of K2Ti6O13 with polymer leads to thermal degradation and transition of polymer composite from semi-crystalline to amorphous phase. The optimum results of contact angle for different loading wt% of K2Ti6O13 were directly correlated with the surface morphology. Our experimental results confirmed the incorporation of K2Ti6O13 in polymer by SEM micrographs. The evaluated dielectric properties (ε' = 424; tan δ = 2.14 at 130 °C and 100 Hz frequency for 20 wt% loading of K2Ti6O13) for polymer composite are higher in compared to pure polymer. The enhancement in dielectric constant and changing the surface properties of polymer composite can be used for the development of electrochemical storage device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mat 25(44):6334–6365

    Article  CAS  Google Scholar 

  2. Dang ZM, Yuan JK, Zha JW, Zhou T, Li AT, Hu GH (2012) Fundamentals, process and application of high permittivity polymer-matrix composites. Prog Mat Sci 57:660–723

    Article  CAS  Google Scholar 

  3. Choe HS, Giaccai J, Alamgir M, Abraham KM (1995) Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes. Electrochem Acta 40:2289–2293

    Article  CAS  Google Scholar 

  4. Venkatesh C, Srinivas V, Panda M, Rao VV (2010) Dielectric response in novel polyvinylidene fluoride/nanoquasicrystalline composites. Solid State Commun 150:893–896

    Article  CAS  Google Scholar 

  5. Adams RD, Layland R, Danot M, Payen C (1996) A new mixed metal titanate: the synthesis and characterization of Ba2Fe2Ti4O13. Polyhed 15:2567–2571

    Article  CAS  Google Scholar 

  6. Ramirez-Salgado J, Fabry P (2002) Feasibility of potentiometric oxygen gas sensor based on perovskite and sodium titante measuring electrode. Sen Actu B: Chemical 82:34–39

    Article  CAS  Google Scholar 

  7. Xie J, Zhu Y, Liu C (2003) Atomic force microscopy (AFM) study on potassium hexatitanate whisker (K2O.6TiO2). J Mat Sci 38:3641–3646

    Article  CAS  Google Scholar 

  8. Hyun MJ, Kang JH, Sung YY, Jong CW, Yong SK (2010) Barium titanate nanoparticles with diblock copolymer shielding layers for high-energy density nanocomposites. Chem Mater 22:450–456

    Article  Google Scholar 

  9. Suibin L, Shuhui Y, Sun R, Ching PW (2014) Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss. ACS App Mat Inter 6:176–182

    Article  Google Scholar 

  10. Avila HA, Ramajo LA, Goes MS, Reboredo MM, Castro MS, Parra R (2013) Dielectric behavior of epoxy/BaTiO3 composites using nanostructured ceramic fibers obtained by electrospinning. ACS App Mat Inter 5:505–510

    Article  CAS  Google Scholar 

  11. Siddabattuni S, Schuman TP, Dogan F (2011) Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control. Mat Sci Engg B 176:1422–1429

    Article  CAS  Google Scholar 

  12. Vikram SV, Maurya D, Chandel VS (2009) Effects of Na-substitution on the dielectric behavior of layered K2-xNaxTi4O9 (0.05 ≤ x ≤ 0.15) ceramics. J Alloy Compd 478:398–403

    Article  CAS  Google Scholar 

  13. Vikram SV, Maurya D, Chandel VS (2010) Synthesis, characterization, and electrical studies on Cu-doped K2Ti6O13 lead-free ceramics: role of defect associated dipoles. J Alloy Compd 489:700–707

    Article  CAS  Google Scholar 

  14. Vikram SV, Maurya D, Phase DM, Chandel VS (2012) Effect of defect dipoles on the dielectric and electrical properties of Mn:K2Ti6O13 lead-free ceramics: EPR spectroscopy-cum-dielectric –spectroscopy. J Mat Sci: Mat Elec 23:718–727

    CAS  Google Scholar 

  15. Cho SD, Lee JY, Hyun JG, Paik KW (2004) Study on epoxy/BaTiO3 composite embedded capacitors films (ECFs) for organic substrate applications. Mater Sci Eng B 110:233–239

    Article  Google Scholar 

  16. Kobayashi Y, Kosuge A, Konno M (2008) Fabrication of high concentration barium titanate/polyvinylpyrrolidone Nano-composite thin films and their dielectric properties. App Surf Sci 255:2723–2729

    Article  CAS  Google Scholar 

  17. Xie SH, Zhu BK, Wei XZ, Xu ZK, Xu YY (2005) Polyamide/BaTiO3 composites with controllable dielectric properties. Composites Part A: App Sci Manu 36:1152–1157

    Article  Google Scholar 

  18. Pal D, Abdi SH, Shukla M (2015) Structural and EPR studies of lithium inserted layered potassium tetra titanate K2Ti4O9 as material for K ion battery. J Mat Sci: Mat Elec 26:6647–6652

    CAS  Google Scholar 

  19. Kudo A, Sakata T (1993) Photoluminescence of layered alkali-metal titanates (A2TinO2n+1, a = Na, K) at 300 and 77 K. J Mat Chem 3:1081–1082

    Article  CAS  Google Scholar 

  20. Li JH, Ning XG, Ye HQ, Pan J, Fukunaga H (1997) Characterization of the whisker-matrix interfacial reactions in K2O.6TiO2 whisker-reinforced aluminum matrix composites. J Mat Sci 32:543–547

    Article  CAS  Google Scholar 

  21. Nguyen CA, Xiong S, Ma J, Lu X, Lee PS (2011) High ionic conductivity P(VDF-TrFE)PEO blended polymer electrolytes for solid electrochromic devices. Phys Chem Chem Phys 13:13319–13326

    Article  CAS  Google Scholar 

  22. Hameed N, Thomas SP, Abraham R, Thomas S (2007) Morphology and contact angle studies of poly(styrene-co-acrylonitrile) modified epoxy resin blends and their glass fibre reinforced composites. Express Polym Lett 1:345–355

    Article  CAS  Google Scholar 

  23. Neumann AW, Good RJ, Hope CJ, Sejpal M (1974) An equation of state approach to determine surface tensions of low energy solids from contact angles. J Colloid Interf Sci 49:291–304

    Article  CAS  Google Scholar 

  24. Karmarkar A, Ghosh A (2012) Dielectric permittivity and electric modulus of polyethylene oxide (PEO)-LiClO4 composite electrolytes. Curr Appl Phys 12:539–543

    Article  Google Scholar 

  25. Li X, Wang G, Huang L, Kang X, Cheng F, Zhao W, Li H (2015) Significant enhancement in dielectric constant of polyimide thin films by doping zirconia nanocrystals. Mater Lett 148:22–25

    Article  CAS  Google Scholar 

  26. Wang XX, Lam KH, Tang XG, Chan HLW (2004) Dielectric characterstics and polarization response of lead free ferroelectric (Bi0.5Na0.5)0.94Ba0.06TiO3-P(VDF-TrFE) 0-3 composites. Solid State Commun 130:695–699

    Article  CAS  Google Scholar 

  27. Sengwa RJ, Dhatarwal P, Choudhary S (2015) Effects of plasticizers and nanofiller on the dielectric dispersion and relaxation behavior of polymer blend based solid polymer electrolytes. Curr Appl Phys 15:135–143

    Article  Google Scholar 

  28. Rajeswari N, Selvasekarapandian S, Prabhu M, Karthikeyan S, Sanjeeviraja C (2013) Lithium ion conducting solid polymer blend electrolyte based on bio-degradable polymers. Bull Mater Sci 36:333–339

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Naval Research Board, Defense Research and Development Organization (NRB-DRDO), New Delhi for financial support under Project No. 259/Mat./11–12, providing the instrumentation facility for electrical characterization. Authors are also thankful to Mr. Albert V. Tamashausky, Director of Research and Technical Services, Asbury Carbons, New Jersey for providing K2Ti6O13 as a sample and the management of VIT University for providing SEM facility under DST-FIST scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish M. Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, M., Joshi, G.M. & Bhattacharya, S. Influence of K2Ti6O13 on dielectric and barrier properties of polymer. Ionics 22, 445–449 (2016). https://doi.org/10.1007/s11581-016-1647-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1647-8

Keywords

Navigation