Skip to main content
Log in

Synthesis of high-performance Fe–Mg-co-doped LiMnPO4/C via a mechano-chemical liquid-phase activation technique

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Carbon-coated Fe–Mg-homogeneously dispersed Li(Mn0.9Fe0.10)1 − x Mg x PO4/C (x = 0.00, 0.01, 0.03, 0.05, and 0.07) powders are synthesized via a mechano-chemical liquid-phase activation technique. Fine-sized and Fe2+ and Mg2+ evenly distributed precursors are formed using this efficient approach successfully. The synthesis temperature and the Mg2+ doping ratio are investigated and optimized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and electrochemical measurements. Mg doping decreases the lattice parameters of LiMn0.9Fe0.1PO4/C, which will ease the expansion/shrinking effect during the insertion/de-insertion processes. Li(Mn0.9Fe0.1)0.95Mg0.05PO4/C synthesised at 700 °C with ~3 wt% of carbon additive presents the best comprehensive electrochemical properties, and it displays good rate capability with specific discharge capacity of 153 mAh g−1 at 0.1C, 140 mAh g−1 at 1C, and 132 mAh g−1 at 2C rate. The results suggest that the electrochemical performance of the LiMnPO4-based cathode is improved as (Mn0.9Fe0.1) is partially substituted by Mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Zhou F, Cococcioni M, Kang K, Ceder G (2004) The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, Co, Ni. Electrochem Commun 6:1144–1148

    Article  CAS  Google Scholar 

  3. Yamada A, Hosoya M, Chung SC, Kudo Y, Hinokuma K, Liu KY, Nishi Y (2003) Olivine-type cathodes: achievements and problems. J Power Sources 119–121:232–238

    Article  Google Scholar 

  4. Gummow RJ, Sharma N, Peterson VK, He Y (2012) Synthesis, structure, and electrochemical performance of magnesium-substituted lithium manganese orthosilicate cathode materials for lithium-ion batteries. J Power Sources 197:231–237

    Article  CAS  Google Scholar 

  5. Damen L, Giorgio FD, Monaco S, Veronesi F, Mastragostino M (2012) Synthesis and characterization of carbon-coated LiMnPO4 and LiMn1−xFexPO4 (x = 0.2, 0.3) materials for lithium-ion batteries. J Power Sources 218:250–253

    Article  CAS  Google Scholar 

  6. Yamada A, Kudo Y, Liu KY (2001) Phase diagram of LixMnyFe1-yPO4 (0 ≤ x, y ≤ 1). J Electrochem Soc 148:A1153–A1158

    Article  CAS  Google Scholar 

  7. Choi D, Wang D, Bae IT, Xiao J, Nie Z, Wang W, Viswanathan VV, Lee YJ, Zhang JG, Graff GL, Yan Z, Liu J (2010) LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett 10:2799–2805

    Article  CAS  Google Scholar 

  8. Qin Z, Zhou X, Xia Y, Tang C, Liu Z (2012) Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. J Mater Chem 22:21144–21153

    Article  CAS  Google Scholar 

  9. Delacourt C, Poizot P, Morcrette M, Tarascon JM, Masquelier C (2004) One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem Mater 16:93–99

    Article  CAS  Google Scholar 

  10. Wu L, Zhong S, Lv F, Liu J (2013) Improving the electrochemical performance of LiMnPO4/C by liquid nitrogen quenching. Mater Lett 110:38–41

    Article  CAS  Google Scholar 

  11. Wang D, Buq H, Crouzet M, Deghenghi G, Drezen T, Exnar I, Kwon N, Miners JH, Poletto L, Gratzel M (2009) High-performance, nano-structured LiMnPO4 synthesized via a polyol method. J Power Sources 189:624–628

    Article  CAS  Google Scholar 

  12. Martha SK, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541–A552

    Article  CAS  Google Scholar 

  13. Liu J, Liu X, Huang T, Yu A (2013) Synthesis of nano-sized LiMnPO4 and in situ carbon coating using a solvothermal method. J Power Sources 229:203–209

    Article  CAS  Google Scholar 

  14. Pan X, Xu C, Hong D, Fang H, Zhen L (2013) Hydrothermal synthesis of well-dispersed LiMnPO4 plates for lithium ion batteries cathode. Electrochim Acta 87:303–308

    Article  CAS  Google Scholar 

  15. Dokko K, Hachida T, Watanabe M (2011) LiMnPO4 nanoparticles prepared through the reaction between Li3PO4 and molten aqua-complex of MnSO4. J Electrochem Soc 158:A1275–A1281

    Article  CAS  Google Scholar 

  16. Su K, Liu F, Chen J (2013) Preparation of high performance carbon-coated LiMnPO4 nanocomposite by an acetate-assisted antisolvent precipitation method. J Power Sources 232:234–239

    Article  CAS  Google Scholar 

  17. Kavana L, Bacsa R, Tunckol M, Serp P, Zakeeruddin SM, Formal FL, Zukalova M, Graetzel M (2010) Multi-walled carbon nanotubes functionalized by carboxylic groups: activation of TiO2 (anatase) and phosphate olivines (LiMnPO4; LiFePO4) for electrochemical Li-storage. J Power Sources 195:5360–5369

    Article  Google Scholar 

  18. Wu L, Lu J, Wei G, Wang P, Ding H, Zheng J, Li X, Zhong S (2014) Synthesis and electrochemical properties of xLiMn0.9Fe0.1PO4·yLi3V2(PO4)3/C composite cathode materials for lithium-ion batteries. Electrochim Acta 146:288–294

    Article  CAS  Google Scholar 

  19. Yang G, Ni H, Liu H, Gao P, Ji H, Roy S, Pinto J, Jiang X (2011) The doping effect on the crystal structure and electrochemical properties of LiMnxM1−xPO4 (M = Mg, V, Fe, Co, Gd). J Power Sources 196:4747–4755

    Article  CAS  Google Scholar 

  20. Liu T, Wu B, Wu X (2014) Realizing Fe substitution through diffusion in preparing LiMn1−xFexPO4-C cathode materials from MnPO4·H2O. Solid State Ionics 254:72–77

    Article  CAS  Google Scholar 

  21. Dong Y, Xie H, Song J, Xu M, Zhao Y, Goodenough JB (2012) The prepared and electrochemical property of Mg doped LiMnPO4 nanoplates as cathode materials for lithium-ion batteries. J Electrochem Soc 159:A995–A998

    Article  CAS  Google Scholar 

  22. Kim J, Park YU, Seo DH, Kim J, Kim SW, Kang K (2011) Mg and Fe Co-doped Mn based olivine cathode material for high power capability. J Electrochem Soc 158:A250–A254

    Article  CAS  Google Scholar 

  23. Shiratsuchi T, Okada S, Doi T, Yamaki J (2009) Cathodic performance of LiMn1−xMxPO4 (M = Ti, Mg and Zr) annealed in an inert atmosphere. Electrochim Acta 54:3145–3151

    Article  CAS  Google Scholar 

  24. Chen G, Shukla AK, Song X, Richardson TJ (2011) Improved kinetics and stabilities in Mg-substituted LiMnPO4. J Mater Chem 21:10126–10133

    Article  CAS  Google Scholar 

  25. Yi H, Hu C, Fang H, Yang B, Yao Y, Ma W, Dai Y (2011) Optimized electrochemical performance of LiMn0.9Fe0.1−xMgxPO4/C for lithium ion batteries. Electrochim Acta 56:4052–4057

    Article  CAS  Google Scholar 

  26. Wu L, Zhong S, Lu J, Liu J, Lv F (2013) Synthesis of Cr-doped LiMnPO4/C cathode materials by sol–gel combined ball milling method and its electrochemical properties. Ionics 19:1061–1065

    Article  CAS  Google Scholar 

  27. Chen G, Wilcox JD, Richardson TJ (2008) Improving the performance of lithium manganese phosphate through divalent cation substitution. Electrochem Solid-State Lett 11:A190–A194

    Article  CAS  Google Scholar 

  28. Wang D, Ouyang C, Drézen T, Exnar I, Kay A, Kwon NH, Gouerec P, Miners JH, Wang M, Grätzel M (2010) Improving the electrochemical activity of LiMnPO4 Via Mn-site substitution. J Electrochem Soc 157:A225–A229

    Article  CAS  Google Scholar 

  29. Zhang Y, Zhao Y (2011) Enhanced electrochemical properties of LiMnPO4/C via Li-site substitution with Mg. Ionics 17:457–461

    Article  CAS  Google Scholar 

  30. Kuo H, Chan T, Bagkar N, Liu G, Liu R, Shen C, Shy D, Xing X, Chen J (2008) Effect of Co2P on electrochemical performance of Li(Mn0.35Co0.2Fe0.45)PO4/C. J Phys Chem B 112:8017–8023

    Article  CAS  Google Scholar 

  31. Hu C, Yi H, Fang H, Yang B, Yao Y, Ma W, Dai Y (2010) Improving the electrochemical activity of LiMnPO4 via Mn-site co-substitution with Fe and Mg. Electrochem Commun 12:1784–1787

    Article  CAS  Google Scholar 

  32. Liu S, Fang H, Dai E, Yang B, Yao Y, Ma W, Dai Y (2014) Effect of carbon content on properties of LiMn0.8Fe0.19Mg0.01PO4/C composite cathode for lithium ion batteries. Electrochim Acta 116:97–102

    Article  CAS  Google Scholar 

  33. Jang D, Palanisamy K, Yoon J, Kim Y, Yoon W (2013) Crystal and local structure studies of LiFe0.48Mn0.48Mg0.04PO4 cathode material for lithium rechargeable batteries. J Power Sources 244:581–585

    Article  CAS  Google Scholar 

  34. Duan J, Cao Y, Jiang J, Du K, Peng Z, Hu G (2014) Novel efficient synthesis of nanosized carbon coated LiMnPO4 composite for lithium ion batteries and its electrochemical performance. J Power Sources 268:146–152

    Article  CAS  Google Scholar 

  35. Liu H, Cao Q, Fu L, Li C, Wu Y, Wu H (2006) Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochem Commun 8:1553–1557

    Article  CAS  Google Scholar 

  36. Shenouda AY (2006) Structure and electrochemical behavior of lithium vanadate materials for lithium batteries. Electrochim Acta 51:5973–5981

    Article  CAS  Google Scholar 

  37. Shenouda AY (2008) Electrochemical properties of doped lithium titanate compounds and their performance in lithium rechargeable batteries. J Power Sources 176:332–339

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nature Science Foundation of Hunan Province (Grant No. 2015JJ3152), Fundamental Research Funds for the Central Universities (2012QNZT018), and China Postdoctoral Science Foundation (2012M521546).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbing Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, J., Hu, G., Cao, Y. et al. Synthesis of high-performance Fe–Mg-co-doped LiMnPO4/C via a mechano-chemical liquid-phase activation technique. Ionics 22, 609–619 (2016). https://doi.org/10.1007/s11581-015-1582-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1582-0

Keywords

Navigation