Skip to main content
Log in

Porous WO3/reduced graphene oxide composite film with enhanced electrochromic properties

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The porous WO3/reduced graphene oxide (rGO) composite films are prepared on indium–tin oxide (ITO) glass by sol-gel method. The mixture sol combines peroxotungstic acid solution with rGO dispersion reduced by ethylene glycol (EG). The excessive EG and other organic additives are subsequently removed by annealing, which leads to the formation of porous structure. Compared with pure WO3 film, WO3/rGO composite film shows improved electrochromic performance because of enhanced double insertion/extraction of ions and electrons. It realizes a large optical modulation (64.2 % at 633 nm), fast switching speed (9.5 s for coloration and 4.5 s for bleaching), good cycling stability as well as reversibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Granqvist CG (2000) Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mater Sol Cells 60:201–262

    Article  CAS  Google Scholar 

  2. Sallard S, Brezesinski T, Smarsly BM (2007) Electrochromic stability of WO3 thin films with nanometer-scale periodicity and varying degrees of crystallinity. J Phys Chem C 111:7200–7206

    Article  CAS  Google Scholar 

  3. Dalavi DS, Devan RS, Patil RA, Patil RS, Ma YR, Sadale SB, Kim I, Kim JH, Patil PS (2013) Efficient electrochromic performance of nanoparticulate WO3 thin films. J Mater Chem C 1:3722–3728

    Article  CAS  Google Scholar 

  4. Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier Science B.V, Amsterdam, pp 1–15

    Book  Google Scholar 

  5. Gillaspie DT, Tenent RC, Dillon AC (2010) Metal-oxide films for electrochromic applications: present technology and future directions. J Mater Chem 20:9585–9592

    Article  CAS  Google Scholar 

  6. Granqvist CG (1999) Progress in electrochromics: tungsten oxide revisited. Electrochim Acta 44:3005–3015

    Article  CAS  Google Scholar 

  7. Crandall RS, Faughnan BW (1976) Dynamics of coloration of amorphous electrochromic films of WO3 at low voltages. Appl Phys Lett 28:95–97

    Article  CAS  Google Scholar 

  8. Faughnan BW, Crandall RS, Lampert MA (1975) Model for the bleaching of WO3 electrochromic films by an electric field. Appl Phys Lett 27:275–277

    Article  CAS  Google Scholar 

  9. Subramanian Balaji YD, Albert A-S, Bruning R, Beaudoin N, Robichauda J (2011) Porous orthorhombic tungsten oxide thin films synthesis, characterization, and application in electrochromic and photochromic devices. J Mater Chem 21:3940–3948

    Article  Google Scholar 

  10. Fang Y, Sun X, Cao H (2011) Influence of PEG additive and annealing temperature on structural and electrochromic properties of sol–gel derived WO3 films. J Sol-Gel Sci Technol 59:145–152

    Article  CAS  Google Scholar 

  11. Ou JZ, Balendhran S, Field MR, McCulloch DG, Zoolfakar AS, Rani RA, Zhuiykov S, O’Mullane AP, Kalantar-Zadeh K (2012) The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. Nanoscale 4:5980–5988

    Article  CAS  Google Scholar 

  12. Shao D, Yu M, Lian J, Sawyer S (2013) An ultraviolet photodetector fabricated from WO3 nanodiscs/reduced graphene oxide composite material. Nanotechnology 24:295701

    Article  Google Scholar 

  13. Liu Y, Li W, Li J, Yang Y, Chen Q (2014) Enhancing photoelectrochemical performance with a bilayer-structured film consisting of graphene–WO3 nanocrystals and WO3 vertically plate-like arrays as photoanodes. RSC Adv 4:3219–3225

    Article  CAS  Google Scholar 

  14. Chai B, Li J, Xu Q, Dai K (2014) Facile synthesis of reduced graphene oxide/WO3 nanoplates composites with enhanced photocatalytic activity. Mater Lett 120:177–181

    Article  CAS  Google Scholar 

  15. Srivastava S, Jain K, Singh VN, Singh S, Vijayan N, Dilawar N, Gupta G, Senguttuvan TD (2012) Faster response of NO2 sensing in graphene-WO3 nanocomposites. Nanotechnology 23:205501

    Article  Google Scholar 

  16. Sun B, Zhang K, Chen L, Guo L, Ai S (2013) A novel photoelectrochemical sensor based on PPIX-functionalized WO3-rGO nanohybrid-decorated ITO electrode for detecting cysteine. Biosens Bioelectron 44:48–51

    Article  CAS  Google Scholar 

  17. Wu H, Xu M, Da P, Li W, Jia D, Zheng G (2013) WO3-reduced graphene oxide composites with enhanced charge transfer for photoelectrochemical conversion. Phys Chem Chem Phys 15:16138–16142

    Article  CAS  Google Scholar 

  18. Fu C, Foo C, Lee PS (2014) One-step facile electrochemical preparation of WO3/graphene nanocomposites with improved electrochromic properties. Electrochim Acta 117:139–144

    Article  CAS  Google Scholar 

  19. Zhao B, Zhang X, Dong G, Wang H, Yan H (2015) Efficient electrochromic device based on sol–gel prepared WO3 films. Ionics. doi:10.1007/s11581-015-1471-6

    Google Scholar 

  20. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  21. Chen Z, Xiao A, Chen Y, Zuo C, Zhou S, Li L (2013) Highly porous nickel oxide thin films prepared by a hydrothermal synthesis method for electrochromic application. J Phys Chem Solids 74:1522–1526

    Article  CAS  Google Scholar 

  22. Fallah HR, Ghasemi varnamkhasti M, Vahid MJ (2010) Substrate temperature effect on transparent heat reflecting nanocrystalline ITO films prepared by electron beam evaporation. Renew Energy 35:1527–1530

    Article  CAS  Google Scholar 

  23. Sathiaraj TS (2008) Effect of annealing on the structural, optical and electrical properties of ITO films by RF sputtering under low vacuum level. Microelectron J 39:1444–1451

    Article  CAS  Google Scholar 

  24. Huang H, Yue Z, Li G, Wang X, Huang J, Du Y, Yang P (2013) Ultraviolet-assisted preparation of mesoporous WO3/reduced graphene oxide composites: superior interfacial contacts and enhanced photocatalysis. J Mater Chem A 1:15110

    Article  CAS  Google Scholar 

  25. Yu M, Sun H, Sun X, Lu F, Hu T, Wang G, Qiu H, Lian J (2013) 3D WO3 nanowires/graphene nanocomposite with improved reversible capacity and cyclic stability for lithium ion batteries. Mater Lett 108:29–32

    Article  CAS  Google Scholar 

  26. Wu C-L, Lin C-K, Wang C-K, Wang S-C, Huang J-L (2013) Annealing induced structural evolution and electrochromic properties of nanostructured tungsten oxide films. Thin Solid Films 549:258–262

    Article  CAS  Google Scholar 

  27. Deepa M, Saxena TK, Singh DP, Sood KN, Agnihotry SA (2006) Spin coated versus dip coated electrochromic tungsten oxide films: structure, morphology, optical and electrochemical properties. Electrochim Acta 51:1974–1989

    Article  CAS  Google Scholar 

  28. Yu P-F, Cui Z-H, Fan W-G, Guo X-X (2013) Correlation between lithium storage and diffusion properties and electrochromic characteristics of WO3 thin films. Chin Phys B 22:038101

    Article  Google Scholar 

  29. Tu J-p, Jun Z, Xia X-h, Wang X-l, Gu C-d (2011) Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance. J Mater Chem 21:5492–5498

    Article  Google Scholar 

  30. Granqvist CG (2014) Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films 564:1–38

    Article  CAS  Google Scholar 

  31. Habib MA, Glueck D (1989) The electrochromic properties of chemically deposited tungsten oxide films. Solar Energy Mater 18:127–141

    Article  CAS  Google Scholar 

  32. Biswas PK, Pramanik NC, Mahapatra MK, Ganguli D, Livage J (2003) Optical and electrochromic properties of sol–gel WO3 films on conducting glass. Mater Lett 57:4429–4432

    Article  CAS  Google Scholar 

  33. Jinmin Wang EK, Lee PS, Ma J (2008) Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J Phys Chem C 112:14306–14312

    Article  Google Scholar 

  34. Deepa M, Kar M, Agnihotry SA (2004) Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance. Thin Solid Films 468:32–42

    Article  CAS  Google Scholar 

  35. Ma D, Wang H, Zhang Q, Li Y (2012) Self-weaving WO3 nanoflake films with greatly enhanced electrochromic performance. J Mater Chem 22:16633

    Article  CAS  Google Scholar 

  36. Gui Y, Blackwood DJ (2013) A self-assembled two-layer structured WO3/TiO2-x mixed film with improved electrochromic capacities. J Electrochem Soc 160:E130–E138

    Article  CAS  Google Scholar 

  37. Qin J, Cao M, Li N, Hu C (2011) Graphene-wrapped WO3 nanoparticles with improved performances in electrical conductivity and gas sensing properties. J Mater Chem 21:17167

    Article  CAS  Google Scholar 

  38. Cai GF, Tu JP, Zhang J, Mai YJ, Lu Y, Gu CD, Wang XL (2012) An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. Nanoscale 4:5724–5730

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Lu, S., Zhang, X. et al. Porous WO3/reduced graphene oxide composite film with enhanced electrochromic properties. Ionics 22, 261–267 (2016). https://doi.org/10.1007/s11581-015-1547-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1547-3

Keywords

Navigation