Skip to main content
Log in

Initial-boundary value problem of the Navier–Stokes equations in the half space with nonhomogeneous data

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

This paper discusses the solvability (global in time) of the initial-boundary value problem of the Navier–Stokes equations in the half space when the initial data \( h\in {\dot{B}}_{q \sigma }^{\alpha -\frac{2}{q}}({{\mathbb {R}}}^n_+)\) and the boundary data \( g\in \dot{ B}_q^{\alpha -\frac{1}{q},\frac{\alpha }{2}-\frac{1}{2q}}({{\mathbb {R}}}^{n-1}\times {\mathbb R}_+) \) with \(g_n\in \dot{B}^{\frac{1}{2} \alpha }_q ({{\mathbb {R}}}_+; \dot{B}^{-\frac{1}{q}}_q ({{\mathbb {R}}}^{n-1}))\cap L^q({\mathbb R}_+;{\dot{B}}^{\alpha -\frac{1}{q}}({{\mathbb {R}}}^{n-1}))\), for any \(0<\alpha <2\) and \(q =\frac{n+2}{\alpha +1}\). Compatibility condition (1.3) is required for h and g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic, Cambridge (2003)

    MATH  Google Scholar 

  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amann, H.: Anisotropic function spaces and maximal regularity for parabolic problems. Part 1. Function spaces. Jindich Neas Center for Mathematical Modeling Lecture Notes, 6. Matfyzpress, Prague, vi+141 (2009)

  5. Amann, H.: Nonhomogeneous Navier–Stokes equations with integrable low-rregularity data. In: Nonlinear Problems in Mathematical Physics and Related Topics, II. 128, Int. Math. Ser. (NY), 2. Kluwer/Plenum, New York (2002)

  6. Amann, H.: On the strong solvability of the Navier–Stokes equations. J. Math. Fluid Mech. 2(1), 16–98 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amann, H.: Navier–Stokes equations with nonhomogeneous Dirichlet data. J. Nonlinear Math. Phys. 10(suppl. 1), 1–11 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer, Berlin, New York (1976)

  9. Cannone, M., Planchon, F., Schonbek, M.: Strong solutions to the incompressible Navier–Stokes equations in the half-space. Commun. Partial Differ. Equ. 25(5–6), 903–924 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chae, D.: Local existence and blow-up criterion for the Euler equations in the Besov spaces. Asymptot. Anal. 38, 339–358 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Chang, T., Jin, B.: Solvability of the Initial-Boundary value problem of the Navier–Stokes equations with rough data. Nonlinear Anal. 125, 498–517 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang, T., Jin, B.: Initial and boundary value problem of the unsteady Navier–Stokes system in the half-space with Hölder continuous boundary data. J. Math. Anal. Appl. 433(2), 1846–1869 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, T., Jin, B.: Initial and boundary values for \(L^p_\alpha (L^p)\) solution of the Navier–Stokes equations in the half-space. J. Math. Anal. Appl. 439(1), 70–90 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dappa, H., Triebel, H.: On anisotropic Besov and Bessel Potential spaces. In: Approximation and Function Spaces (Warsaw 1986), vol. 22, pp. 69–87. Banach Center Publication, Warsaw (1989)

  15. de Almeida, M.F., Ferreira, L.C.F.: On the Navier–Stokes equations in the half-space with initial and boundary rough data in Morrey spaces. J. Differ. Equ. 254(3), 1548–1570 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Farwig, R., Galdi, G.P., Sohr, H.: Very weak solutions of stationary and instationary Navier–Stokes equations with nonhomogeneous data. In: Nonlinear Elliptic and Parabolic Problems. Progress in Nonlinear Differential Equations Application, vol. 64, pp. 113–136. Birkhäuser, Basel (2005)

  17. Farwig, R., Kozono, H.: Weak solutions of the Navier–Stokes equations with non-zero boundary values in an exterior domain satisfying the strong energy inequality. J. Differ. Equ. 256(7), 2633–2658 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Farwig, R., Kozono, H., Sohr, H.: Very weak solutions of the Navier–Stokes equations in exterior domains with nonhomogeneous data. J. Math. Soc. Japan 59(1), 127–150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Farwig, R., Kozono, H., Sohr, H.: Global weak solutions of the Navier–Stokes equations with nonhomogeneous boundary data and divergence. Rend. Semin. Mat. Univ. Padova 125, 51–70 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I, Linearlised Steady Problems. Springer Tracts in Natural Philosopy, vol. 38. Springer, New York (1994)

    MATH  Google Scholar 

  21. Giga, M., Giga, Y., Sohr, H.: \(L^p\) estimates for the Stokes system. Functional analysis and related topics, 1991 (Kyoto), 5567, Lecture Notes in Mathematics, 1540. Springer, Berlin (1993)

  22. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62(2), 186–212 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Giga, Y., Miyakawa, T.: Solutions in \(L_r\) of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 89(3), 267–281 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  24. Giga, Y., Sohr, H.: Abstract \(L^p\) estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102(1), 72–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grubb, G.: Nonhomogeneous Navier–Stokes problems in \(L_p\) Sobolev spaces over exterior and interior domains. In: Theory of the Navier–Stokes Equations. Series of Advanced Mathematics Application and Science, vol. 47, pp. 46–63. World Science Publication, River Edge (1998)

  26. Grubb, G.: Nonhomogeneous time-dependent Navier–Stokes problems in \(L_p\) Sobolev spaces. Differ. Integral Equ. 8(5), 1013–1046 (1995)

    MATH  MathSciNet  Google Scholar 

  27. Grubb, G.: Nonhomogeneous Dirichlet Navier–Stokes problems in low regularity \(L_p\) Sobolev spaces. J. Math. Fluid Mech. 3(1), 57–81 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grubb, G., Solonnikov, V.A.: Boundary value problems for the nonstationary Navier–Stokes equations treated by pseudo-differential methods. Math. Scand. 69(2), 217–290 (1992)

    MathSciNet  MATH  Google Scholar 

  29. Koch, H., Solonnikov, V. A.: \(L_q\)-estimates of the first-order derivatives of solutions to the nonstationary Stokes problem. In: Nonlinear Problems in Mathematical Physics and Related Topics, I. International Mathematic Series (NY), vol. 1, pp. 203–218. Kluwer/Plenum, New York (2002)

  30. Koch, H., Solonnikov, V.A.: \(L_p\)-Estimates for a solution to the nonstationary Stokes equations. J. Math. Sci. 106(3), 3042–3072 (2001)

    Article  MathSciNet  Google Scholar 

  31. Kozono, H.: Global \(L^n\)-solution and its decay property for the Navier–Stokes equations in half-space \(R^n_+ \). J. Differ. Equ. 79(1), 79–88 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ladyženskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence (1968)

  33. Lewis, J.E.: The initial-boundary value problem for the Navier–Stokes equations with data in \(L^p\). Indiana Univ. Math. J. 22, 739–761 (1972/1973)

  34. Raymond, J.-P.: Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. H. Poincar Anal. Non Linaire 24(6), 921–951 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ri, M., Zhang, P., Zhang, Z.: Global well-posedness for Navier–Stokes equations with small initial value in \(B^0_{n, \infty } (\omega )\). J. Math. Fluid Mech. 18(1), 103–131 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sawada, O.: On time-local solvability of the Navier–Stokes equations in Besov spaces. Adv. Differ. Equ. 8(4), 385–412 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Solonnikov, V.A.: Estimates for solutions of the nonstationary Stokes problem in anisotropic Sobolev spaces and estimates for the resolvent of the Stokes operator. Uspekhi Mat. Nauk (Russian) 58(2), 123–156 (2003); translation in Russ. Math. Surv. 58(2), 331–365 (2003)

  38. Solonnikov, V.A.: Estimates of the solutions of the nonstationary Navier–Stokes system. Boundary value problems of mathematical physics and related questions in the theory of functions, 7. Zap. Naun. Sem. LOMI. 38, 153–231 (1973)

    Google Scholar 

  39. Solonnikov, V.A.: \(L_p\)-estimates for solutions to the initial boundary-value problem for the generalized Stokes system in a bounded domain. Function theory and partial differential equations. J. Math. Sci. (NY) 105(5), 2448–2484 (2001)

    Article  Google Scholar 

  40. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  41. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Publishing company, Amsterdam (1978)

    MATH  Google Scholar 

  42. Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, vol. 78. Birkhäuser Verlag, Basel (1983)

    Book  MATH  Google Scholar 

  43. Triebel, H.: Theory of Function Spaces. III. Monographs in Mathematics, vol. 100. Birkhäuser Verlag, Basel (2006)

    MATH  Google Scholar 

  44. Ukai, S.: A solution formula for the Stokes equation in \({{\mathbb{R}}}^n_+\). Commun. Pure Appl. Math. 40, 611–621 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  45. Voss, K.A.: Self-similar Solutions of the Navier–Stokes Equation. Thesis (Ph.D.) Yale University (1996)

  46. Yamazaki, M.: A quasi-homogeneous version of paradifferential operators, I. Boundedness on spaces of Besov type. J. Fac. Sci. Tokyo 33, 131–174 (1986)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

T. Chang’s work is supported by 2017R1D1A1B03033427. Bum Ja Jin was supported by NRF-2016R1D1A1B03934133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongkeun Chang.

Appendices

Appendix A: Proof of Lemma 3.5

In [32], it was determined that

$$\begin{aligned} \Vert T_1f\Vert _{{\dot{W}}^{2,1}_q({{\mathbb {R}}}^n\times {{\mathbb {R}}})}&\le c\Vert f\Vert _{L^q({{\mathbb {R}}}^n\times {{\mathbb {R}}})}. \end{aligned}$$
(A.1)

Note that \(T_1^*\) is the adjoint operator of \(T_1\). Hence, (A.1) implies that

$$\begin{aligned} \Vert T_1^*f\Vert _{L^p({{\mathbb {R}}}^n\times {{\mathbb {R}}})} \le c\Vert f\Vert _{\dot{W}^{-2,-1}_p({{\mathbb {R}}}^n\times {{\mathbb {R}}})}. \end{aligned}$$
(A.2)

Further, note that \(D^2_yT_1^*f\) and \(\ D_s T_1^*f\) comprise \(L^p\) Fourier multipliers as the Fourier transform of \(T_1^*f\) is \( \widehat{T^*_1 f}(\xi , \eta )=\frac{1}{|\xi |^2-i \eta } {\hat{f}}(\xi ,\eta )\). Hence, we have

$$\begin{aligned} \Vert T_1^*f\Vert _{\dot{W}^{2,1}_{p}({{\mathbb {R}}}^n\times {{\mathbb {R}}})} \le c \Vert f\Vert _{L^p({{\mathbb {R}}}^n\times {{\mathbb {R}}})}, \quad 1<p<\infty . \end{aligned}$$
(A.3)

As \(T^*_1\) is the adjoint operator of \(T_1\), (A.3) implies that

$$\begin{aligned} \Vert T_1f\Vert _{L^p({{\mathbb {R}}}^n\times {{\mathbb {R}}})} \le c\Vert f\Vert _{\dot{W}^{-2,-1}_p({{\mathbb {R}}}^n\times {{\mathbb {R}}})}. \end{aligned}$$
(A.4)

By applying the real interpolation theory to (A.1) and (A.4), and (A.2) and (A.3), we obtain estimates of \(T_1f\) and \(T_1^* f\) in \(\dot{B}^{\alpha ,\frac{\alpha }{2}}_q({{\mathbb {R}}}^n\times {{\mathbb {R}}})\) for \(0<\alpha <2\).

Appendix B: Proof of Lemma 3.6

First, let us derive the estimate of \(T_2g\). From [32], we have the following estimate

$$\begin{aligned} \Vert T_2g\Vert _{{\dot{W}}^{2,1}_q({{\mathbb {R}}}^n_+ \times {{\mathbb {R}}})}\le c\Vert g\Vert _{{\dot{B}}_q^{1-\frac{1}{q},\frac{1}{2}-\frac{1}{2q}}({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}})}. \end{aligned}$$
(B.1)

Note that the identity

$$\begin{aligned} \int _{-\infty }^\infty \int _{{{\mathbb {R}}}^n_+} T_2g(x,t) \phi (x,t) dxdt = < g, T_1^* {{\tilde{\phi }}}|_{y_n=0}> \end{aligned}$$
(B.2)

holds for \(\phi \in C^\infty _0({{\mathbb {R}}}^n_+\times {{\mathbb {R}}})\), where \( T^*_1 {{\tilde{\phi }}}\) is defined in Sect. 3 with zero extension \({{\tilde{\phi }}}\) of \(\phi \) and \(<\cdot ,\cdot>\) is the duality pairing between \({\dot{B}}^{-1-\frac{1}{q},-\frac{1}{2}-\frac{1}{2q}}_q({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}})\) and \({\dot{B}}^{1+\frac{1}{q},\frac{1}{2}+\frac{1}{2q}}_{q'}({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}}).\) Based on (4) of Proposition 2.1 and (A.3), we have

$$\begin{aligned} \Vert T_1^*\phi |_{y_n=0}\Vert _{\dot{B}^{1+\frac{1}{q}, \frac{1}{2}+\frac{1}{2q} }_{q'}({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}})} \le c \Vert T_1^*\phi \Vert _{\dot{W}^{2,1}_{q'}({{\mathbb {R}}}^n\times {{\mathbb {R}}})} \le c \Vert \phi \Vert _{L^{q'}({{\mathbb {R}}}^n_+ \times {{\mathbb {R}}}) }. \end{aligned}$$
(B.3)

By applying the estimates in (B.2)–(B.3), we have

$$\begin{aligned} \Vert T_2g \Vert _{L^q({{\mathbb {R}}}^n_+ \times {{\mathbb {R}}})}\le c\Vert g\Vert _{\dot{B}^{-1-\frac{1}{q}, -\frac{1}{2}-\frac{1}{2q} }_q({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}}) }. \end{aligned}$$
(B.4)

Further, by applying the real interpolation theory to (B.1) and (B.4),

we obtain the estimate of \(T_2g\) in \(\dot{B}^{\alpha ,\frac{\alpha }{2}}_q({{\mathbb {R}}}^n_+\times {{\mathbb {R}}})\) for \(0<\alpha <2\).

Analogously, we can derive the estimate of \(T_2^*g\) by observing that the identity

$$\begin{aligned} \int _{-\infty }^\infty \int _{{{\mathbb {R}}}^n_+} T_2^*g(y,s) \phi (y,s) dyds = <g, T_1 {{\tilde{\phi }}}|_{x_n=0}> \end{aligned}$$
(B.5)

holds for \(\phi \in C^\infty _0({{\mathbb {R}}}^n_+ \times {{\mathbb {R}}})\), where \( T_1 {{\tilde{\phi }}}\) is defined in Sect. 3 with zero extension \({{\tilde{\phi }}}\) of \(\phi \), and \(<\cdot ,\cdot>\) is the duality pairing between \({\dot{B}}^{-1-\frac{1}{q},-\frac{1}{2}-\frac{1}{2q}}_q({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}})\) and \({\dot{B}}^{1+\frac{1}{q},\frac{1}{2}+\frac{1}{2q}}_{q'}({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}}).\) By using the same procedure as that used for the estimate of \(T_2g\), we can obtain the estimate of \(T_2^*g\) as

$$\begin{aligned} \Vert T_2^*g \Vert _{L^q({{\mathbb {R}}}^n_+ \times {{\mathbb {R}}})}\le c\Vert g\Vert _{\dot{B}^{-1-\frac{1}{q}, -\frac{1}{2}-\frac{1}{2q} }_q({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}}) } \end{aligned}$$
(B.6)

(As the procedure is the same as that for \(T_2g\), we omitted the details). As \(D_sT_2^*g=T_2^*(D_sg)\), we have

$$\begin{aligned} \Vert D_sT_2^*g \Vert _{L^q({{\mathbb {R}}}^n_+ \times {{\mathbb {R}}})}\le c\Vert D_sg\Vert _{\dot{B}^{-1-\frac{1}{q},-\frac{1}{2} -\frac{1}{2q} }_q({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}}) }\le c\Vert g\Vert _{\dot{B}^{1-\frac{1}{q}, \frac{1}{2}-\frac{1}{2q} }_q({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}}) }. \end{aligned}$$
(B.7)

In addition, as \(\Delta _y T_2^*g=-D_sT_2^*g\) and \(\frac{\partial }{\partial y_n}T_2^*g|_{y_n=0}=g\), based on the well-known elliptic theory [2, 3], we have

$$\begin{aligned} \Vert T_2^*g(s) \Vert _{ \dot{W}^{2}_q({{\mathbb {R}}}^n_+ )}\le c\Vert D_s T_2^*g(s) \Vert _{L^q({{\mathbb {R}}}^n_+ )}+c\Vert g(s)\Vert _{\dot{B}^{1-\frac{1}{q}}_q({{\mathbb {R}}}^{n-1})}. \end{aligned}$$

This implies that

$$\begin{aligned} \Vert T_2^*g \Vert _{L^q({{\mathbb {R}}};\dot{W}^{2}_q({{\mathbb {R}}}^n_+ ))}\le c\Vert g\Vert _{ \dot{B}^{1-\frac{1}{q}, \frac{1}{2}-\frac{1}{2q} }_q({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}}) }. \end{aligned}$$
(B.8)

By combining (B.7) and (B.8), we have

$$\begin{aligned} \Vert T_2^*g \Vert _{\dot{W}^{2,1}_q({{\mathbb {R}}}^n_+ \times {{\mathbb {R}}})}\le c\Vert g\Vert _{\dot{B}^{1-\frac{1}{q}, \frac{1}{2}-\frac{1}{2q} }_q({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}}) }. \end{aligned}$$
(B.9)

By applying the real interpolation theory to (B.6) and (B.9), we obtain the estimate of \(T_2^*g\) in \(\dot{B}^{\alpha ,\frac{\alpha }{2}}_q({{\mathbb {R}}}^n_+\times {{\mathbb {R}}})\) for \(0<\alpha <2\). Thus, we complete the proof of Lemma 3.6.

Appendix C: Proof of Lemma 3.7

From [32], the following estimate is known:

$$\begin{aligned} \Vert \Gamma _t*h\Vert _{{\dot{W}}^{2,1}_q({{\mathbb {R}}}^n\times {{\mathbb {R}}}_+)}\le c\Vert h\Vert _{{\dot{B}}_q^{2-\frac{2}{q}}({{\mathbb {R}}}^n)}. \end{aligned}$$
(C.1)

Let us consider the case where \(h\in \dot{B}^{-\frac{2}{q}}_q({{\mathbb {R}}}^n)\). Note that the identity \( \int ^\infty _{0}\int _{{{\mathbb {R}}}^n}\Gamma _t*h(x,t)\phi (x,t)dx dt=<h,T_1^*\phi |_{s=0}>\) holds for \(\phi \in C_0^\infty ({{\mathbb {R}}}^n\times {{\mathbb {R}}})\), where \(T_1^*\phi (y,s)=\int ^\infty _{s}\int _{{{\mathbb {R}}}^n}\Gamma (x-y,t-s)\phi (x,t)dxdt,\), and \(<\cdot ,\cdot>\) is the duality pairing between \({\dot{B}}^{-\frac{2}{q}}_q({{\mathbb {R}}}^n)\) and \({\dot{B}}^{\frac{2}{q}}_{q'}({{\mathbb {R}}}^n).\) From (A.3), we have

$$\begin{aligned} \Vert T_1^*\phi \Vert _{\dot{W}^{2,1}_{q'}({{\mathbb {R}}}^n\times {{\mathbb {R}}})} \le c \Vert \phi \Vert _{L^{q'}({{\mathbb {R}}}^n\times {{\mathbb {R}}}) }. \end{aligned}$$

By using (5) of Proposition 2.1, this implies that

$$\begin{aligned} \Vert T_1^*\phi |_{s=0}\Vert _{{\dot{B}}_{q'}^{2-\frac{2}{q'}}({{\mathbb {R}}}^n)}\le c\Vert T^*_1\phi \Vert _{\dot{W}^{2,1}_{q'}({{\mathbb {R}}}^n\times {{\mathbb {R}}})} \le c \Vert \phi \Vert _{L^{q'}({{\mathbb {R}}}^n\times {{\mathbb {R}}}_+) }. \end{aligned}$$

(See [41] and [43].) Hence, we have

$$\begin{aligned} <h,T_1^*\phi |_{s=0}>\le c\Vert h\Vert _{{\dot{B}}_q^{-\frac{2}{q}}({{\mathbb {R}}}^n)}\Vert T_1^*\phi \Vert _{{\dot{B}}^{2-\frac{2}{q'}}({{\mathbb {R}}}^n)}\le c\Vert h\Vert _{{\dot{B}}_q^{-\frac{2}{q}}({{\mathbb {R}}}^n)}\Vert \phi \Vert _{L^{q'}({{\mathbb {R}}}^n\times {{\mathbb {R}}}) }. \end{aligned}$$

Again, this leads to the following conclusion

$$\begin{aligned} \Vert \Gamma _t*h\Vert _{L^q({{\mathbb {R}}}^n\times {{\mathbb {R}}}_+)}\le c\Vert h\Vert _{{\dot{B}}^{-\frac{2}{q}}_q({{\mathbb {R}}}^n)}. \end{aligned}$$
(C.2)

By interpolating (C.1) and (C.2), we have

$$\begin{aligned} \Vert \Gamma _t*h\Vert _{B^{\alpha ,\frac{\alpha }{2}}_q({{\mathbb {R}}}^n\times {{\mathbb {R}}}_+)}\le c \Vert h\Vert _{\dot{B}^{\alpha -\frac{2}{q}}_q({{\mathbb {R}}}^n)}, \qquad 0< \alpha < 2. \end{aligned}$$
(C.3)

Now, we will derive the estimate of \(\Gamma _t*h|_{x_n=0}\).

  1. (1)

    Let \(\alpha >\frac{1}{q}\). Then by (5) of Proposition 2.1, \(\Gamma _t*h\in \dot{B}^{\alpha ,\frac{\alpha }{2}}_q({{\mathbb {R}}}^n\times {{\mathbb {R}}}_+)\) implies that \(\Gamma _t*h|_{x_n=0}\in \dot{B}^{\alpha -\frac{1}{q},\frac{\alpha }{2}-\frac{1}{2q}}_q({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}}_+)\) with

    $$\begin{aligned} \Vert \Gamma _t*h|_{x_n=0}\Vert _{\dot{B}^{\alpha -\frac{1}{q},\frac{\alpha }{2}-\frac{1}{2q}}_q({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}}_+)}&\le c\Vert \Gamma _t*h\Vert _{\dot{B}^{\alpha ,\frac{\alpha }{2}}_q({{\mathbb {R}}}^n\times {{\mathbb {R}}}_+)} \le c \Vert h\Vert _{\dot{B}_q^{\alpha -\frac{2}{q}}({{\mathbb {R}}}^n)}. \end{aligned}$$
  2. (2)

    Let \(0<\alpha < \frac{1}{q}.\) In this case, usual trace theorem does not hold any more. For \(h\in {\dot{B}}^{\alpha -\frac{2}{q}}_q({{\mathbb {R}}}^n)\) the following identity holds:

    $$\begin{aligned}<\Gamma _t*h\Big |_{x_n=0},\phi>=<h, T_2^*\phi |_{s=0}>, \end{aligned}$$
    (C.4)

    holds for any \(\phi \in C^\infty _0({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}})\), where \(T_2^*\phi (y,s)=\int ^\infty _s\int _{{{\mathbb {R}}}^{n-1}}\Gamma (x'-y',y_n,t-s)\phi (x',t)dx'dt\) and \(<\cdot ,\cdot>\) is the duality pairing between \({\dot{B}}^{\alpha -\frac{2}{q}}_q({{\mathbb {R}}}^n)\) and \({\dot{B}}^{-\alpha +\frac{2}{q}}_{q'}({{\mathbb {R}}}^n)\) . From the result of Lemma 3.6, \( T_2^*\phi \in {\dot{B}}^{-\alpha +2,-\frac{\alpha }{2}+1}_{q'}({{\mathbb {R}}}^n_+\times {{\mathbb {R}}}) \) with

    $$\begin{aligned} \Vert T_2^*\phi \Vert _{ {\dot{B}}^{-\alpha +2,-\frac{\alpha }{2}+1}_{q'}({{\mathbb {R}}}^n_+\times {{\mathbb {R}}})} \le c\Vert \phi \Vert _{{\dot{B}}^{-\alpha +\frac{1}{q},-\frac{\alpha }{2}+\frac{1}{2q}}_{q'}({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}})}. \end{aligned}$$

    By (4) of Proposition 2.1, this implies that \(T_2^*\phi \Big |_{s=0}\in {\dot{B}}^{-\alpha +\frac{2}{q}}_{q'}({{\mathbb {R}}}^n_+ )\) with

    $$\begin{aligned} \Vert T_2^*\phi \Big |_{s=0}\Vert _{ {\dot{B}}^{-\alpha +\frac{2}{q}}_{q'}({{\mathbb {R}}}^n_+ )} \le c\Vert \phi \Vert _{{\dot{B}}^{-\alpha +\frac{1}{q},-\frac{\alpha }{2}+\frac{1}{2q}}_{q'}({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}})}. \end{aligned}$$

    Hence

    $$\begin{aligned} |<h, T_2^*\phi \Big |_{s=0}>|\le c\Vert h\Vert _{{\dot{B}}^{\alpha -\frac{2}{q}}_q({{\mathbb {R}}}^n)}\Vert \phi \Vert _{{\dot{B}}^{-\alpha +\frac{1}{q},-\frac{\alpha }{2}+\frac{1}{2q}}_{q'}({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}})} \end{aligned}$$

    Applying the above estimate to (C.4), \(\Gamma _t*h|_{x_n=0}\in {\dot{B}}^{\alpha -\frac{1}{q},\frac{\alpha }{2}-\frac{1}{2q}}_{q}({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}})\) with

    $$\begin{aligned} \Vert \Gamma _t*h|_{x_n=0}\Vert _{{\dot{B}}^{\alpha -\frac{1}{q},\frac{\alpha }{2}-\frac{1}{2q}}_{q}({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}})}\le c\Vert h\Vert _{{\dot{B}}^{\alpha -\frac{2}{q}}_q({{\mathbb {R}}}^n)}. \end{aligned}$$
    (C.5)
  3. (3)

    Finally let us consider the case \(\alpha =\frac{1}{q}\). Using the real interpolation, we get the case of \(\alpha =\frac{1}{q}\).

Appendix D: Proof of Lemma 3.8

  • Let \({\tilde{f}}\in L^p({{\mathbb {R}}};{B}^{\beta }_p({{\mathbb {R}}}^n))\) be the zero extension of f to \({{\mathbb {R}}}^n\times {{\mathbb {R}}}\). Note that \(D_x \Gamma * {{\tilde{f}}} = \Gamma * D_x {{\tilde{f}}}\). From (A.1), we have

    $$\begin{aligned} \Vert D_x\Gamma * {{\tilde{f}}}\Vert _{\dot{W}^{2,1}_p({{\mathbb {R}}}^n\times {{\mathbb {R}}})} \le c\Vert D_x {{\tilde{f}}}\Vert _{L^p( {{\mathbb {R}}}; L^p({{\mathbb {R}}}^n))} \le c\Vert f\Vert _{L^p( {{\mathbb {R}}}_+;{\dot{W}}^1_p({{\mathbb {R}}}^n))} \end{aligned}$$

    and

    $$\begin{aligned} \Vert D_x\Gamma *{{\tilde{f}}}\Vert _{\dot{W}^{1,\frac{1}{2}}_p({{\mathbb {R}}}^n\times {{\mathbb {R}}})}\le c \Vert \Gamma *{{\tilde{f}}}\Vert _{\dot{W}^{2,1}_p({{\mathbb {R}}}^n\times {{\mathbb {R}}})} \le c\Vert f\Vert _{L^p( {{\mathbb {R}}}_+;L^p({{\mathbb {R}}}^n))}. \end{aligned}$$

    By interpolating these two estimates, we can obtain

    $$\begin{aligned} \Vert D_x\Gamma *{f}\Vert _{\dot{B}^{\beta +1,\frac{\beta +1}{2}}_p({{\mathbb {R}}}^n\times {{\mathbb {R}}})}\le c\Vert { f}\Vert _{L^p({{\mathbb {R}}}_+;{\dot{B}}^{\beta }_p({{\mathbb {R}}}^n))}, \,\, 0<\beta <1. \end{aligned}$$
    (D.1)

    Further, by applying Besov imbedding (see (3) of Proposition 2.1), for \(1-\alpha +\beta -(n+2)(\frac{1}{p}-\frac{1}{q})=0\) , we have

    $$\begin{aligned} \Vert D_x\Gamma *{f}\Vert _{{\dot{B}}_{q}^{\alpha ,\frac{\alpha }{2}}({{\mathbb {R}}}^n\times {{\mathbb {R}}})}\le c \Vert { f}\Vert _{L^p({{\mathbb {R}}}_+;{\dot{B}}^\beta _p({{\mathbb {R}}}^n))}. \end{aligned}$$
    (D.2)

    Note that \(D_x\Gamma *{f}(x,t)=0\) for \(t\le 0\). Hence, \(D_x\Gamma *{f}\in {\dot{B}}_{q(0)}^{\alpha ,\frac{\alpha }{2}}({{\mathbb {R}}}^n\times {{\mathbb {R}}}_+).\)

  • Now, we derive the estimate of \(D_x\Gamma *{f}\Big |_{x_n=0}\).

  1. (1)

    Let \(\alpha >\frac{1}{q}\). Then, according to the usual trace theorem, \(D_x\Gamma *{f}\in B^{\alpha ,\frac{\alpha }{2}}_{q(0)}({{\mathbb {R}}}^n\times {{\mathbb {R}}}_+)\) implies that \(D_x\Gamma *{f}|_{x_n=0}\in B^{\alpha -\frac{1}{q},\frac{\alpha }{2}-\frac{1}{2q}}_{q(0)}({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}}_+)\) with

    $$\begin{aligned} \Vert D_x\Gamma *{f}|_{x_n=0}\Vert _{B^{\alpha -\frac{1}{q},\frac{\alpha }{2}-\frac{1}{2q}}_{q(0)}({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}}_+)}&\le c\Vert D_x\Gamma *{f}\Vert _{B^{\alpha ,\frac{\alpha }{2}}_{q}({{\mathbb {R}}}^n\times {{\mathbb {R}}}_+)} \nonumber \\&\le c \Vert { f}\Vert _{L^p({{\mathbb {R}}}_+ ;{\dot{B}}^\beta _p({{\mathbb {R}}}^n)))}. \end{aligned}$$
    (D.3)
  2. (2)

    Let \(0<\alpha \le \frac{1}{q}\). In this case, the usual trace theorem does not hold true. If \(\alpha +\frac{n+1}{p}-\frac{n+2}{q}>0\), we can choose r with \(p<r<q,\)\(\alpha +\frac{n+1}{r}-\frac{n+2}{q}>0\). Set \(\gamma =\alpha +\frac{n+2}{r}-\frac{n+2}{q}\), then \(\alpha -\frac{1}{q}-\frac{n+1}{q}=\gamma -\frac{1}{r}-\frac{n+1}{r}\) and \(\alpha -\frac{1}{q}<\gamma -\frac{1}{r}\). Hence, by using the Besov embedding theorem,

    $$\begin{aligned} \Vert D_x\Gamma *{f}|_{x_n=0}\Vert _{B^{\alpha -\frac{1}{q},\frac{\alpha }{2}-\frac{1}{2q}}_{q(0)}({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}}_+)}\le c\Vert D_x\Gamma *{f}|_{x_n=0}\Vert _{B^{\gamma -\frac{1}{r},\frac{\gamma }{2}-\frac{1}{2r}}_{r0}({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}}_+)}. \end{aligned}$$

    As \(\gamma >\frac{1}{r}\), the use of the usual trace theorem gives

    $$\begin{aligned}&\Vert D_x\Gamma *{f}|_{x_n=0}\Vert _{B^{\gamma -\frac{1}{r},\frac{\gamma }{2}-\frac{1}{2r}}_{r0}({{\mathbb {R}}}^{n-1}\times {{\mathbb {R}}}_+)}\\&\quad \le c\Vert D_x\Gamma *{f}\Vert _{B^{\gamma ,\frac{\gamma }{2}}_{r0}({{\mathbb {R}}}^{n-1}\times ({{\mathbb {R}}}_+ ))} \le c \Vert { f}\Vert _{L^p({{\mathbb {R}}}_+;{\dot{B}}^\beta _p({{\mathbb {R}}}^n))}. \end{aligned}$$

    Hence, the proof of Lemma 3.8 is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, T., Jin, B.J. Initial-boundary value problem of the Navier–Stokes equations in the half space with nonhomogeneous data. Ann Univ Ferrara 65, 29–56 (2019). https://doi.org/10.1007/s11565-018-0312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-018-0312-8

Keywords

Mathematics Subject Classification

Navigation