Skip to main content
Log in

Two formulas for the BR multiplicity

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

We prove a projection formula, expressing a relative Buchsbaum–Rim multiplicity in terms of corresponding ones over a module-finite algebra of pure degree, generalizing an old formula for the ordinary (Samuel) multiplicity. Our proof is simple in spirit: after the multiplicities are expressed as sums of intersection numbers, the desired formula results from two projection formulas, one for cycles and another for Chern classes. Similarly, but without using any projection formula, we prove an expansion formula, generalizing the additivity formula for the ordinary multiplicity, a case of the associativity formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Buchsbaum, D., Rim, D.: A generalized Koszul complex. II. Depth and multiplicity. Trans. Amer. Math. Soc 111, 197–224 (1964). (28 #3076)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chevalley, C.: Intersections of algebraic and algebroid varieties. Trans. Amer. Math. Soc 57, 1–85 (1945). (7, 26c)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry.” Graduate Texts in Mathematics, vol. 150. Springer, New York (1995). (97a:13001)

    MATH  Google Scholar 

  4. Eisenbud, D., Huneke, C., Ulrich, B.: What is the Rees algebra of a module? Proc. Amer. Math. Soc 131(3), 701–708 (2003). (2003:13003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fulton, W.: “Intersection Theory.” Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2. Springer, Berlin (1984). (85k:14004)

    Google Scholar 

  6. Gaffney, T., Rangachev, A.: Pairs of modules and determinantal isolated singularities. arXiv:1501.00201v2 [math.CV]

  7. Huneke, C., Swanson, I.: “Integral closure of ideals, rings, and modules,” London Mathematical Society Lecture Note Series, 336. Cambridge University Press, Cambridge (2006). (2008m:13013)

    Google Scholar 

  8. Kirby, D., Rees, D.: Multiplicities in graded rings. I. The general theory, Commutative algebra: syzygies, multiplicities, and birational algebra, Contemp. Math. Amer. Math. Soc. Provid. R 159, 209–267 (1994). (95b:13002)

    MATH  Google Scholar 

  9. Kleiman, S. L.: The Picard scheme, in “Fundamental Algebraic Geometry,” pp. 235–321, Math. Surveys Monogr., 123, Amer. Math. Soc., Providence (2005)

  10. Kleiman, S., Thorup, A.: A geometric theory of the Buchsbaum–Rim multiplicity. J. Algebra 167(1), 168–231 (1994). (96a:14007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kleiman, S., Thorup, A.: Mixed Buchsbaum–Rim multiplicities, Amer. J. Math. 118(3), 529–569 (1996). (98g:14008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lech, C.: On the associativity formula for multiplicities, Ark. Mat. 3, 301–314 (1957). (19,11a)

  13. Mumford, D.: “Lectures on Curves on an Algebraic Surface.” Annals of Mathematics Studies, vol. 59. Princeton University Press, Princeton (1966). (35 #187)

    MATH  Google Scholar 

  14. Ramanujam, C. P.: On a geometric interpretation of multiplicity, Invent. Math. 22, 63–67 (1973/74). (50 #7141)

  15. Samuel, P.: “Algèbre locale.” Mémor. Sci. Math., vol. 123. Gauthier–Villars, Paris (1953). (14, #1012c)

    Google Scholar 

  16. Samuel, P.: “Méthodes d’algèbre abstraite en géométrie algébrique.” Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 4. Springer, Berlin (1955). (17,300b)

  17. Serre, J.-P.: “Algèbra Locale, Multiplicités,” Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Mathematics, vol. 11. Springer (1965). (34 #1352)

  18. Zariski, O., Samuel, P.: “Commutative Algebra. Vol. II.” The University Series in Higher Mathematics. D. Van Nostrand Co., Inc, Princeton (1960). (22 #11006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Kleiman.

Additional information

To the memory of Alexandru (Bobi) Lascu: a dear friend, tireless colleague, and inspiring coauthor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleiman, S.L. Two formulas for the BR multiplicity. Ann Univ Ferrara 63, 147–158 (2017). https://doi.org/10.1007/s11565-016-0250-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-016-0250-2

Keywords

Mathematics Subject Classification

Navigation